首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   4篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1990年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.

Background

The pH of a biological system is a crucial determinant of the structures and reactivity of its components and cellular homeostasis of H+ is critical for cell viability. Control and monitoring of cellular acidity are highly desirable for the purpose of studying biochemical processes in vivo.

Methods

The effect of photolysis of a caged strong acid, the ester 1-(2-nitrophenyl)-ethylhexadecyl sulfonate (HDNS) is used to cause a controlled drop in pH in single cells. An isolated cell is selected under the IR microscope, irradiated with near-UV light and monitored by FTIR.

Results

We demonstrate the use of FTIR spectromicroscopy to monitor light-induced acidification of the cellular medium by measuring the increased concentration of CO2 and corresponding decrease of HCO3 in the cell and in the surrounding medium.

Conclusions

We have demonstrated a method to control and accurately monitor the changes in pH of a cellular system by coupling a caged proton-releasing agent with FTIR spectromicroscopy detection. The overall implementation of photolysis and spectroscopic detection in a microscope optical configuration ensures single cell selectivity in both acidification and monitoring. We show the viability of monitoring of pH changes by FTIR spectromicroscopy with sensitivity comparable to that of glass electrodes, better than the existing methods for determining cell pH.

General significance

Reporting the effect of small variations of cellular acidity provides a major improvement in the understanding of the interplay between molecular properties as assessed in vitro and cell physiology.  相似文献   
2.
The biologically active form of interferon γ (IFN-γ) is a dimer consisting of two identical non-covalently bound polypeptide chains. We have studied spectroscopically the dimer–monomer dissociation equilibrium of human recombinant IFN-γ and have found that the monomers possess approximately 50% lower Trp quantum yield than the dimers [Boteva et al. Biochemistry 1996;35:14825]. In the present study we characterise the conformational properties of the two states — monomeric and dimeric, and analyse the effects of the salt composition of human blood plasma, physiological cations K+, Na+, Ca2+ and Mg2+ and mechanical stress on the dimer–monomer equilibrium. A medium with electrolyte composition of human blood plasma increases both the association and dissociation rate constants without shifting significantly the dimer–monomer equilibrium. The physiological cations shift the equilibrium towards dissociation of dimers into monomers by lowering the activation energy and the free energy of the process thus decreasing the stability of IFN-γ. Mechanical stress caused by stirring of the protein solution reduces irreversibly the Trp fluorescence by 75–80% and decreases significantly the -helical content and favours the aggregation.  相似文献   
3.
The high mobility group box (HMGB) 1 protein, one of the most abundant nuclear non-histone proteins has been known for its inhibitory effect on repair of DNA damaged by the antitumor drug cisplatin. Here, we report the first results that link HMGB1 to repair of cisplatin-treated DNA at nucleosome level. Experiments were carried out with three types of reconstituted nucleosomes strongly positioned on the damaged DNA: linker DNA containing nucleosomes (centrally and end-positioned) and core particles. The highest repair synthesis was registered with end-positioned nucleosomes, two and three times more efficient than that with centrally positioned nucleosomes and core particles, respectively. HMGB1 inhibited repair of linker DNA containing nucleosomes more efficiently than that of core particles. Just the opposite was the effect of the in vivo acetylated HMGB1: stronger repair inhibition was obtained with core particles. No inhibition was observed with HMGB1 lacking the acidic tail. Binding of HMGB1 proteins to different nucleosomes was also analysed. HMGB1 bound preferentially to damage nucleosomes containing linker DNA, while the binding of the acetylated protein was linker independent. We show that both the repair of cisplatin-damaged nucleosomes and its inhibition by HMGB1 are nucleosome position-dependent events which are accomplished via the acidic tail and modulated by acetylation.  相似文献   
4.
High‐protein feeding acutely lowers postprandial glucose concentration compared to low‐protein feeding, despite a dichotomous rise of circulating glucagon levels. The physiological role of this glucagon rise has been largely overlooked. We here first report that glucagon signalling in the dorsal vagal complex (DVC) of the brain is sufficient to lower glucose production by activating a Gcgr–PKAERK–KATP channel signalling cascade in the DVC of rats in vivo. We further demonstrate that direct blockade of DVC Gcgr signalling negates the acute ability of high‐ vs. low‐protein feeding to reduce plasma glucose concentration, indicating that the elevated circulating glucagon during high‐protein feeding acts in the brain to lower plasma glucose levels. These data revise the physiological role of glucagon and argue that brain glucagon signalling contributes to glucose homeostasis during dietary protein intake.  相似文献   
5.
6.
Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. In this study, we have analyzed nucleotide sequences encompassing 629 bp at the carboxy terminus of the G glycoprotein gene for HRSV subgroup A strains isolated over 47 years, including 112 Belgian strains isolated over 19 consecutive years (1984 to 2002). By using a maximum likelihood method, we have tested the presence of diversifying selection and identified 13 positively selected sites with a posterior probability above 0.5. The sites under positive selection correspond to sites of O glycosylation or to amino acids that were previously described as monoclonal antibody-induced in vitro escape mutants. Our findings suggest that the evolution of subgroup A HRSV G glycoprotein is driven by immune pressure operating in certain codon positions located mainly in the second hypervariable region of the ectodomain. Phylogenetic analysis revealed the prolonged cocirculation of two subgroup A lineages among the Belgian population and the possible extinction of three other lineages. The evolutionary rate of HRSV subgroup A isolates was estimated to be 1.83 x 10(-3) nucleotide substitutions/site/year, projecting the most recent common ancestor back to the early 1940s.  相似文献   
7.
High mobility group box (HMGB)1 protein acts as an architectural element, promoting the assembly of active nucleoprotein complexes due to its ability to bend DNA and to bind preferentially to distorted DNA structures. The behavior of HMGB1 as an "architect" of chromatin defines it as an important factor in many cellular processes such as repair, replication and remodeling. It was shown that the post-synthetic acetylation of HMGB1 at Lys2 modulated its essential properties as a structure-specific nuclear protein. We studied the role of PKC phosphorylation on the "architectural" properties of HMGB1, (i) the effect for the formation of a stable complex with DNA damaged by the anti-tumour drug cis-platinum and (ii) the influence on the ability of HMGB1 protein to bend short DNA fragments. PKC-phosphorylated recombinant HMGB1 increased about an order of magnitude its affinity to cis-platinated DNA, a finding that has already been reported for in vivo acetylated protein. Regarding the effect on the protein's DNA bending ability, it was enhanced upon phosphorylation as demonstrated by the stimulation of DNA circularization. We showed also that PKC phosphorylated the recombinant protein in vitro simultaneously at two target sites. Our results demonstrate that the PKC phosphorylation of HMGB1 has a considerable effect on the fundamental properties of the protein; therefore this post-synthetic modification may serve as a modulator of the HMGB1 participation in different nuclear processes.  相似文献   
8.
The investigated strain Trichosporon cutaneum shows well expressed capability for metabolizing high concentrations of phenol, up to 1 g/l, utilizing it as the sole carbon source for the growth and development of the population. The data reported, prove the good perspectives for its application in protecting the environment from phenol pollution. No data about modelling the process of cultivation of Trichosporon cutaneum in phenol media is available in scientific literature up to now. The mathematical model, reported here, consists of two nonlinear differential equations, describing cell growth and substrate consumption. The unknown parameters are estimated following the method of Hooke and Jeeves. A number of simulation investigations are carried out. They prove the adequacy of the model and its applicability in further studies on the processes of growth and phenol uptake of Trichosporon cutaneum.  相似文献   
9.
Ribonucleotide reductase is a heterodimeric (alpha(2)beta(2)) allosteric enzyme that catalyzes the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. In the enzymatically active form aerobic Escherichia coli ribonucleotide reductase is a complex of homodimeric R1 and R2 proteins. We use electrochemical studies of the dinuclear center to clarify the interplay of subunit interaction, the binding of allosteric effectors and substrate selectivity. Our studies show for the first time that electrochemical reduction of active R2 generates a distinct Met form of the diiron cluster, with a midpoint potential (-163 +/- 3 mV) different from that of R2(Met) produced by hydroxyurea (-115 +/- 2 mV). The redox potentials of both Met forms experience negative shifts when measured in the presence of R1, becoming -223 +/- 6 and -226 +/- 3 mV, respectively, demonstrating that R1-triggered conformational changes favor one configuration of the diiron cluster. We show that the association of a substrate analog and specificity effector (dGDP/dTTP or GMP/dTTP) with R1 regulates the redox properties of the diiron centers in R2. Their midpoint potential in the complex shifts to -192 +/- 2 mV for dGDP/dTTP and to -203 +/- 3 mV for GMP/dTTP. In contrast, reduction potential measurements show that the diiron cluster is not affected by ATP (0.35-1.45 mm) and dATP (0.3-0.6 mm) binding to R1. Binding of these effectors to the R1-R2 complex does not perturb the normal docking modes between R1 and R2 as similar redox shifts are observed for ATP or dATP associated with the R1-R2 complex.  相似文献   
10.
Using spectroscopic techniques we studied the effect of the nucleophilic reagents cyanide, cyanate and thiocyanate on three flavo-oxidases namely alcohol oxidase (AO), glucose oxidase (GOX) and D-amino acid oxidase (DAOX). All three ions, added at concentrations in the mM range, caused release of the flavin adenine dinucleotide (FAD) co-factors from the enzyme molecules. In the case of AO this was accompanied by significant conformational perturbations, which was not observed for GOX and DAOX. As suggested from fluorescence, absorption and circular dichroism spectral changes at least one phenolic hydroxyl group became ionized upon FAD release from AO and a new class of Trp residues, fluorescent only in apo-AO protein, was demasked.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号