首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   10篇
  2022年   2篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   11篇
  2007年   5篇
  2006年   4篇
  2005年   13篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   10篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
1.
The patterns of serine metabolism into phospholipids of cultured brain cells was examined. Labeled serine was incorporated predominantly into serine- ad ethanolamine-containing phospholipids and sphingolipids. The highest rates of labeling were observed in the (1)acyl-(2)acyl- and (1)alkyl-(2)acyl-serine phosphoglyceride fractions. Serine incorporation into both compounds appears to proceed via a base exchange mechanism. A decrease in the rate of serine phosphoglycerides labeling and a depletion of the ATP levels were observed when oligomycin or the calcium ionophore A23187 was added to the incubation medium. The inhibition of serine incorporation by A23187 could be partially reversed following addition of 10 mM CaCl2. Based on these findings it is suggested that in addition to demonstrating the energy-independent calcium-stimulated pathway, there may also be an energy related pathway. Formation of ethanolamine phosphoglycerides, as a result of serine phosphoglycerides decarboxylation, has been analyzed by using a simplified compartmental model. Of the 0.67 nmol/mg of protein turned over per h in the diacylserine phosphoglyceride compartment, 0.14 nmol/mg of protein are converted into the ethanolamine phosphoglycerides. In a similar manner, of the 0.09 nmol/mg of protein turned over per h in the (1)alkyl-(2)acyl-serine phosphoglyceride compartment, 0.014 nmol/mg of protein is converted into the (1)alkyl-(2)acyl-ethanolamine phosphoglyceride. These figures provide a first indication that a considerable portion of the ethanolamine phosphoglycerides in cultured brain cells is formed via a direct decarboxylation of the serine phosphoglycerides. In estimating the rates of (1)alkenyl-(2)acyl-ethanolamine phosphoglyceride formation from (1)alkyl-(2)acyl-ethanolamine phosphoglyceride the precursor-product specific activity crossover point could not be established. Mathematical analysis, however, enabled us to estimate the flux from the former into the latter as 0.04 nmol/mg of protein per h. A scheme for the possible metabolic interconversions of the ether bond containing serine and ethanolamine phosphoglycerides is proposed.  相似文献   
2.
Biotinylated derivatives of tetanus toxin were prepared and isolated by chromatofocusing and ganglioside-affinity chromatography. Biotinylation was monitored by the appearance of a 210,00 dalton complex upon SDS-polyacrylamide gel electrophoresis in the presence of avidin, and by selective binding to an avidin-Sepharose gel. At molar biotin:toxin ratios from 11 to 201 only biotinylated derivatives with low toxicity were obtained; these derivatives, however, retained 60–80% of their specific binding affinity for brain synaptosomes. A biotinylated tetanus toxin derivative purified by ganglioside-affinity chromatography was used to identify and localize tetanus toxin binding sites on PC12 cells. Electron microscopic analysis with streptavidin-gold revealed very low levels of tetanus toxin binding sites on the surface of untreated cells, and the appearance of such binding sites during the second week of nerve growth factor-induced differentiation. Examination of micrographs of the differentiated cells indicated that the tetanus toxin binding sites sites are concentrated on the neurites, with relatively few appearing on the cell bodies. Cognate studies using125I-labeled, affinity-purified tetanus toxin revealed an increase in PC12 binding capacity from about 0.07 nmol/mg protein in untreated cells to 0.8 nmoles/mg protein in cells treated for 14 days with nerve growth factor. Cells treated in suspension for 2–3 weeks with nerve growth factor do not express tetanus toxin binding sites; upon plating, these cells required one week for the appearance of binding sites, although neurites grew much more rapidly from these primed cells. The high binding capacity of these tetanus toxin sites, as well as their sensitivity to neuraminidase, is indicative of a polysialoganglioside structure. The advantages of biotinylated tetanus toxin derivatives are discussed and the significance of nerve growth factor-differentiated PC12 cells grown as monolayers as a model for the study of the development, localization, and function of neuraminidase-sensitive tetanus toxin binding sites is presented.Abbreviations PBS phosphate-buffered saline - STS sucrose-Tris-serum solution - NGF nerve growth factor - C collagen - PL polylysine - BBG bovine brain ganglioside mixture - GM1 gafactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide - GD1a [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide - GT1a [N-aceylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide - GD1b galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl-N-acetylneuraminyl]-galactosylglucosyl ceramide - GT1b [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl-N-acetylneuraminyl] galactosylglucosyl ceramide - NANA N-acetylneuraminic acid  相似文献   
3.
A new experimental model for studying the effects of acute ischemia on brain development in the near-term fetal rat has been devised. Ischemic conditions are achieved by complete clamping of blood vessels branching from the uterine vasculature into each individual fetus for designated times followed by removal of the clamps to permit reperfusion. Accumulation of lactic acid in the fetal brain depends on the length of the restriction period, reaching a plateau level of 29 mumol/g tissue at about 30 min. It also depends on the reperfusion time. Thus after a period of 15 min of restriction lactate levels show an increase over the next 30-min reperfusion to a value of 25.5 mumol/g followed by a rapid decrease to normal values by 3 h of reperfusion. Restriction of 15 min followed by reperfusion of 45 min causes an elevation of prostaglandin E2 (PGE2) level from 12.4 +/- 0.86 ng/g to 21.1 +/- 0.6 ng/g (p less than 0.001). This elevation in PGE2 level is less apparent after 20 min of restriction. No effects are seen on the level of PGF2 alpha. Both PGE2 and PGF2 alpha accumulate in vitro in a time-dependent manner by brain particulate fraction. In vitro synthesis of both PGE2 and PGF2 alpha is inhibited by indomethacin (100% and 68%, respectively) and AA861 (94% and 76%, respectively). BW755c and nordihydroguaiaretic acid do not affect PGE2 formation but enhance PGF2 alpha production by 112% and 152%, respectively. Particulate fractions from restricted brain produce less PGF2 alpha than control brains (6.38 +/- 1.62 versus 11.43 +/- 2.2, p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
P Lazarovici  E Yavin 《Biochemistry》1986,25(22):7047-7054
The pharmacokinetic interaction of an affinity-purified 125I-labeled tetanotoxin fraction with guinea pig brain synaptosomal preparations was investigated. Binding of tetanotoxin was time- and temperature-dependent, was proportional to protein concentration, and was saturable at about 8 X 10(-9) M as estimated by a solid-surface binding assay. Binding was optimal at pH 6.5 under low ionic strength buffer and was almost entirely blocked by gangliosides or antitoxin. In analogy to intact nerve cells, binding of toxin to membranes resulted in a tight association operationally defined as sequestration. Binding and sequestration were abolished after membrane pretreatment with sialidase. The enzyme could not dissociate the membrane-bound toxin formed at 4 or 37 degrees C under low ionic strength conditions, which is in part compatible with internalization as defined in nerve cell cultures. In the latter system the toxin could be removed at 4 degrees C but not at 37 degrees C. Binding was significantly reduced upon pretreatment of guinea pig brain membranes by a variety of hydrolytic enzymes. Trypsin and chymotrypsin inhibited binding between 55% and 68% while bacterial protease abolished it by 91-95%. The effect was species-specific as it was not seen in rat or bovine synaptosomes. Collagenase and hyaluronidase had little or no inhibitory effect when applied to synaptosomes (27% and 9%) but inhibited binding to synaptic vesicles by 56% and 49%, respectively. Phospholipases A2 and C caused 42-43% inhibition of binding in vesicles and less than 22% in synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Abstract: Energy-dependent internalization of 125I-labeled tetanus toxin into cultured neural cells is shown to follow an energy-independent binding process. A three-step model, involving receptor-mediated binding followed by sequestration and internalization is proposed. In the first step, binding of toxin is enhanced in appearance under low ionic strength medium, at 0–4°C; it is suppressed, however, with increasing incubation temperature under physiological salt concentrations. Cell-bound toxin is displaced by approximately 35.5% when high-salt medium (physiological concentrations) is added to cells at 0–4°C; the effect is further amplified at 37°C. Addition of disialoganglioside GD1b (1–5 μg/ml) also lowers the amount of cell-associated toxin. The fraction of 125I-labeled toxin retained by the cells after exposure to high-salt medium at 0–4°C or after addition of GD1b is operationally defined as sequestered toxin. This second step, characterized by a stable association of the toxin with the neural cells, is affected by both physiological salt and by 37°C conditions. Lastly, an energy-dependent phenomenon of firm association of tetanus toxin with neural cells, compatible with internalization, is described. The toxin residing in this fraction is bioactive and cannot be removed by salts, gangliosides, or by treatment with protease or neuraminidase. Binding, sequestration, and internalization are mutually dependent, as they are all blocked by pretreatment of cells with neuraminidase and by an enhanced energy-independent sequestration event, which results in enhanced tetanus toxin internalization by an energy-dependent process.  相似文献   
6.
The appearance of arachidonic acid (AA) oxidation products in fetal rabbit brain and placenta under normal or partial short-term ischemic episodes induced by placental blood vessel restriction was examined. Intracerebral administration of [3H]AA into close-to-term rabbit fetuses gave rise to radioactively labeled prostaglandin (PG) E2, thromboxane B2, and 6-keto-PGF1 alpha metabolites as detected by HPLC analysis. A significant increase of 20-30% of [3H]AA precursor into eicosanoids was detected in brain of fetuses after 2-h restriction. The thromboxane B2 and 6-keto-PGF1 alpha levels were determined by radioimmunoassay technique over a period of 48 h following ischemic episodes. Thromboxane B2 content in affected animals was higher by five- and twofold at 3 h over control fetal brain and placental tissue values, respectively, and remained significantly higher for 24 h. 6-Keto-PGF1 alpha levels reached a peak value that was greater by 2.5- and 1.5-fold at 6 h for the ischemic brain and placental tissue, respectively, compared with control fetuses. PGE2 levels were less affected, attaining a maximum of 1.9- and 1.1-fold in brain and placenta correspondingly. The thromboxane/prostacyclin ratio reached a maximum in the brain after approximately 3 h, while that in the placenta continued to rise even after 20 h. Persisting high levels of thromboxane are indicative of cerebral vasoconstriction and may suggest possible damaging effects.  相似文献   
7.
nef genes from human immunodeficiency virus type 1 isolates BH10 and LAV1 (lymphadenopathy-associated virus type 1) were expressed in Escherichia coli under the deo operon promoter. The two proteins found in the soluble compartment of the bacterial lysate were purified by ion-exchange column chromatography to apparent homogeneity. Determination of the amino-terminal sequence revealed glycine as the first amino acid in the Nef protein, indicating removal of the initiator methionine during expression in E. coli. Under native conditions, the recombinant Nef protein is a monomer of 23 kilodaltons. In denaturing polyacrylamide gels, however, BH10 and LAV1 Nef proteins migrate as 28 and 26 kilodaltons, respectively. GTP binding and GTPase activity were monitored during Nef protein purification. These activities did not copurify with the recombinant Nef protein from either the BH10 or the LAV1 isolate. Purified recombinant BH10 Nef protein was used as an immunogen to elicit mouse monoclonal antibodies. A series of monoclonal antibodies were obtained which reacted with sequences at either the amino or carboxy terminus of Nef. In addition, a conformational epitope reacting with native BH10, but not LAV1, Nef was isolated.  相似文献   
8.
The protein composition of the particulate fraction of dissociated foetal rat cerebral cells during maturation in culture was investigated. SDS polyacrylamide gel electrophoresis showed a general decrease in the histonal components and significant changes in composition of a group of polypeptides with molecular weights ranging from 42 to 60 K. Two of these polypeptides coelectrophoresed with tubulin and actin whereas a 48 K polypeptide comigrated with the major component of the Wolfgram myelin protein. Its relative quantity appeared to approach a plateau after 8 days in culture. The myelin basic and proteolipid proteins were below detection levels in cultured cells at any time point investigated. A group of polypeptides with estimated molecular weights of 47, 51 and 52 K possibly representing synaptic proteins increased with time in culture. The appearance of a prominent band (60 K) in brain cultures and in other cells of divergent origin was demonstrated. This protein may be related to the process of cell adaptation to culture conditions. The developmental changes in the protein profile are discussed in the context of an in vitro myelinogenesis and synaptogenesis and compared with whole brain particulate and subcellular fractions.  相似文献   
9.
Bovine thyroglobulin has been subjected to sequential glycohydrolase treatment in order to define further the components of the carbohydrate chain which are important in binding of the glycoprotein to bovine thyroid membranes. Preparations of asialoagalactothyroglobulin exhibit the best binding, suggesting that exposed N-acetylglucosamine residues on the B carbohydrate chain of thyroglobulin play an important role in the interaction of thyroglobulin with the thyroid membranes. Enhanced binding of asialoagalactothyroglobulin to microsomal, lysosomal, and Golgi membranes, as well as to thyroid cells in culture, was also observed. Isopycnic rubidium chloride gradient centrifugation, a procedure used in the isolation of thyroglobulin molecules with a low iodine content, also isolates thyroglobulin molecules with a low sialic acid content and with an increased ability to interact with wheat germ agglutinin, a lectin which recognizes exposed N-acetylglucosamine residues. The studies further indicate that there is a correlation between iodine content, exposed N-acetylglucosamine residues, and the binding of thyroglobulin to thyroid membranes.  相似文献   
10.
Cue‐induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non‐activated neurons during cue‐induced heroin seeking after prolonged withdrawal. We trained rats to self‐administer heroin for 10 days (6 h/day) and assessed cue‐induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent‐activated cell sorting (FACS) to purify Fos‐positive and Fos‐negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos‐immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos‐positive, but not Fos‐negative, neurons. In support of these findings, double‐label immunohistochemistry indicated substantial coexpression of neuropeptide Y (NPY)‐ and Arc‐immunoreactivity in Fos‐positive neurons. Our data indicate that cue‐induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non‐activated neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号