首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2008年   1篇
  2007年   2篇
  2000年   1篇
  1998年   2篇
  1988年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The abundance and biomass of ciliates, rotifers, cladocerans and copepods were studied in Lake Peipsi and Lake Võrtsjärv, both of which are shallow, turbid and large. Our hypothesis was that in a large shallow eutrophic lake, the ciliates could be the most important zooplankton group. The mean metazooplankton biomass was higher in Peipsi than in Võrtsjärv (mean values and SD, 1.8 ± 0.7 and 1.3 ± 0.6 mg WM l?1). In Peipsi, the metazooplankton biomass was dominated by filtrators that feed on large-sized phytoplankton and are characteristic of oligo-mesotrophic waters. In Võrtsjärv, the metazooplankton was dominated by species characteristic of eutrophic waters. The planktonic ciliates in both lakes were dominated by oligotrichs. The biomass of ciliates was much greater in Võrtsjärv (mean 2.3 ± 1.4 mg WM l?1) than in Peipsi (0.1 ± 0.08 mg WM l?1). Ciliates formed about 60% of the total zooplankton biomass in Võrtsjärv but only 6% in Peipsi. Thus, the food chains in the two lakes differ: a grazing food chain in Peipsi and a detrital food-chain in Võrtsjärv. Consequently, top-down control of phytoplankton can be assumed to be much more important in Peipsi than in Võrtsjärv. When the detrital food chain prevails, the planktonic ciliates become the most important zooplankton group in shallow, eutrophic and large lake. Neglecting protozooplankton can result in serious underestimates of total zooplankton biomass since two-thirds of the zooplankton biomass in Võrtsjärv comprises ciliates.  相似文献   
5.
6.
Abundance and biomass of the microbial loop members [bacteria, heterotrophic nanoflagellates (HNF), and ciliates] were seasonally measured in the naturally eutrophic and shallow (2.8 mean depth) Lake Võrtsjärv, which has a large open surface area (average 270 km2) and highly turbid water (Secchi depth <1 m). Grazing rates (filter feeding rates) on 0.5-, 3-, and 6-μm-diameter particles were measured to estimate pico- and nanoplankton grazing (filter feeding) by micro- and metazooplankton. Among grazers, HNF had a low abundance (<50 cells mL?1) and, due to their low specific filtering rates, they only grazed a minor fraction of the bacterioplankton (≤4.2% of total grazing). Ciliates were relatively abundant (≤158 cells mL?1) and, considering their high specific feeding rates, were able to graze more than 100% of the bacterial biomass production in the open part of the lake, whereas the average daily grazing accounted for 9.3% of the bacterial standing stock. Ciliates were potentially important grazers of nanoplanktonic organisms (on average, approximately 20% of the standing stock of 3-μm-size particles was grazed daily). Metazooplankton grazed a minor part of the bacterioplankton, accounting for only 0.1% of standing stock of bacteria. Grazing on nanoplankton (3–6 μm) by metazooplankton was higher (0.4% of standing stock). The hypothesis is proposed that ciliates dominate due to a lack of top–down regulation by predators, and HNF have a low abundance due to strong grazing pressure by ciliates.  相似文献   
7.
Zingel  Priit  Ott  Ingmar 《Hydrobiologia》2000,435(1-3):19-26
The vertical distribution of planktonic ciliates in eight strongly stratified temperate lakes was studied in summer 1998. Ciliate abundance and biomass were highest (mean 39.9 cells ml–1 and 181.9 g C l–1) in the epi-, and lowest (mean 8.2 cells ml–1 and 97.6 g C l–1) in the hypolimnion. The community of ciliates was dominated by five orders: Oligotrichida, Haptorida, Prostomatida, Scuticociliatida and Peritrichida. The community composition varied greatly with depth. In the epilimnion, the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and haptorids were also numerous. In the metalimnion, these groups were replaced by scuticociliates and mixotrophic prostomatids. In the hypolimnion species known as benthic migrants appeared. We found a positive significant correlation (p < 0.05) between ciliate numbers and Chl a and bacterial densities. Only in the hypolimnion, the correlation between ciliates numbers and Chl a was not significant.  相似文献   
8.
The influence of functional group specific production and respiration patterns on a lake''s metabolic balance remains poorly investigated to date compared to whole-system estimates of metabolism. We employed a summed component ecosystem approach for assessing lake-wide and functional group-specific metabolism (gross primary production (GPP) and respiration (R)) in shallow and eutrophic Lake Võrtsjärv in central Estonia during three years. Eleven functional groups were considered: piscivorous and benthivorous fish; phyto-, bacterio-, proto- and metazooplankton; benthic macroinvertebrates, bacteria and ciliates; macrophytes and their associated epiphytes. Metabolism of these groups was assessed by allometric equations coupled with daily records of temperature and hydrology of the lake and measurements of food web functional groups biomass. Results revealed that heterotrophy dominated most of the year, with a short autotrophic period observed in late spring. Most of the metabolism of the lake could be attributed to planktonic functional groups, with phytoplankton contributing the highest share (90% of GPP and 43% of R). A surge of protozooplankton and bacterioplankton populations forming the microbial loop caused the shift from auto- to heterotrophy in midsummer. Conversely, the benthic functional groups had overall a very small contribution to lake metabolism. We validated our ecosystem approach by comparing the GPP and R with those calculated from O2 measurements in the lake. Our findings are also in line with earlier productivity studies made with 14C or chlorophyll a (chl-a) based equations. Ideally, the ecosystem approach should be combined with diel O2 approach for investigating critical periods of metabolism shifts caused by dynamics in food-web processes.  相似文献   
9.
The membrane potential of primitive red cells from 4- and 6-day old chick embryos has been determined using the fluorescent dye Dis-C3-(5). At day 4 the membrane potential Em was -44 mV for pH 7.4 and 20 degrees C and -36 mV at day 6. Both values are far removed from the equilibrium potential for chloride, which is about -14 mV at day 6. Changes in the external potassium, sodium or chloride concentration were without effect on the membrane potential, except at very high potassium concentrations, where a small but significant depolarization was observed at day 6. The measurements gave the same results in the absence or presence of the anion exchange blocking agent DIDS. Three pieces of evidence indicate that the membrane potential of primitive red cells is primarily caused by an electrogenic H+ conductance: 1) The measured membrane potential of -36 mV at day 6 is close to the previously determined proton equilibrium potential (Baumann and Haller, 1983) EH + of -36 mV. 2) Addition of the electrosilent Cl-/OH- exchanger tributyltin causes a significant depolarization of about 20 mV at day 4 and about 14 mV at day 6. 3) Measurement of hydrogen ion fluxes demonstrate a potential dependent proton conductance, which increases with depolarization. These results indicate that large qualitative differences exist with regard to the mechanisms involved in the generation of membrane potential and hydrogen distribution between red cell and plasma of embryonic and adult chicken.  相似文献   
10.
Kisand  Veljo  Nõges  Tiina  Zingel  Priit 《Hydrobiologia》1998,380(1-3):93-102
The diel dynamics of bacterio- and phytoplankton as main compartments in the pelagic foodweb were followed in order to assess the coupling between algal photosynthesis and bacterial growth during a diel cycle in Lake Võrstjärv, Estonia. Three diurnal studies were carried out, on July 12th–13th, 1994; on June 25th–26th, 1995 and on July 17th–18th, 1995 with a sampling interval of 3–4 hours. Diel variations in bacterial number, biomass and productivity, in phytoplankton primary production and extracellular release of photosynthetic products, in ciliate number and biomass were followed. Phytoplankton was dominated by filamentous species: Limnothrix redekei, Oscillatoria sp., Aulacoseira (Melosira) ambigua and Planktolyngbya limnetica. The abundance of bacteria ranged from 4.1 to 14.6 · 1012 cells m-2 (median 9.88). The production of heterotrophic bacteria varied from 0.6 to 11 mgC m-2 h-1 (median 3.65), the variation during diel cycle was high. Depth integrated values of particulate (PPpart) and extracellular primary production (PPdiss) ranged from 6 to 55 and from 17 to 90 mgC m- 2 h-1, respectively. About 50 ciliate taxa were identified among them more abundant were bacterivores, bacterivores- herbivores and omnivores. Biomass of bacterivorous ciliates (TCbact) varied from 8 to 427 mgC m-2. Bacterioplankton production constituted not more than 20% of total primary production (particulate + released), dynamics of bacterial production was related to the primary production, the correlation was negative with PPpart and positive with PPdiss. Different types of potential controlling factors of bacterioplankton (N and P nutrient control, bottom-up control by food and top-down control) are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号