首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
排序方式: 共有13条查询结果,搜索用时 593 毫秒
1.
β-lactoglobulin (BLG), a dominant allergen in goat milk, is difficult to remove by traditional biochemical methods. Its elimination from goat milk by genetic modification therefore poses a major challenge for modern goat breeders. A shRNA targeting BLG mRNA with high interference efficiency was identified, with which lentiviral vectors were used for mediating stable shRNA interference in goat-fetal fibroblast cells. Apart from high efficiency in the knockdown of BLG expression in these cells, lentivector-mediated RNAi manifested stable integration into the goat genome itself. Consequently, an in vitro model for goat BLG-content control was compiled, and a goat-cell line for accompanying transgenetic goat production created.  相似文献   
2.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   
3.
Alzheimer’s disease (AD) is the most common neurodegenerative disease with multifactorial pathologies including Aβ containing senile plaques and neurofibrillary tangles (NFT) consisted of aggregated Tau. Most of the AD patients are sporadic and the familial mutation hereditary patients are composed only 1% of all cases. However, the current AD mouse models employ mutated APP, PS1, or even Tau mutant, in order to display a portion of AD pathologies. Delta-secretase (legumain, or asparaginyl endopeptidase, AEP) simultaneously cleaves both APP and Tau and augments Aβ production and Tau hyperphosphorylation and aggregation, contributing to AD pathogenesis. Here we show that δ-secretase is sufficient to promote prominent AD pathologies in wild-type hAPP/hMAPT double transgenic mice. We crossed hAPP l5 mice and hMAPT mice to generate double transgenic mouse model carrying both human wild-type APP and Tau. Compared to the single transgenic parents, these double transgenic mice demonstrated AD-related pathologies in one-year-old hAPP/hMAPT mice. Notably, overexpression of δ-secretase in hAPP/hMAPT double-transgenic mice evidently accelerated enormous senile plaques and NFT, associated with prominent synaptic defects and cognitive deficits. Hence, δ-secretase facilitates AD pathogenesis independent of any patient-derived mutation.Subject terms: Alzheimer''s disease, Neurological disorders  相似文献   
4.
Sweat gland (SG) cells forming SG tubule-like structures in 3D culture, this is one of the most important methods to identify the biological function of SG cells and stem cells-derived SG-like cells, but also the important way on research of SG regeneration in vitro. In this study, we seeded human fibroblasts and SG cells in gels and used immunohistochemistry to confirm whether SG tubule-like structures formed. Fibroblasts are necessary factor in the process of SG cells maturation and forming SG’s secretory region in 3D culture. Further experimentation revealed that Sonic hedgehog (Shh) was secreted by fibroblasts within the 3D culture. By adding Shh protein to 3D culture, there had more SG tubule-like structures formed. These results suggest that Shh is an important factor during the process of forming SG tubule-like structures in 3D cultures, and adding Shh recommbinant protein could promote SG cell maturation and enhance the efficiency of structure formation.  相似文献   
5.
6.
7.
徐军  周琼  温周瑞  谢平 《生态学报》2013,33(15):4658-4664
稳定碳、氮同位素比值分析技术是研究生态系统中物质循环与能量流动的有效技术.δ13C可以用来判断食物网中不同生物的能量来源;δ15N主要用于确定生物在食物网中所处的营养位置.通常用δ13C—δ15N图来表征某一特定时间或空间的食物网结构,但是这种方法在比较不同时间和空间食物网结构中功效较差.同时这种定性描述食物网结构也无法满足食物网复杂变化下的假说验证.应用环形统计方法,以太湖梅梁湾鱼类群落为例,定量评价了群落水平食物网能流季节演替特征.结果表明太湖梅梁湾鱼类营养生态位移动的季节特征明显.进一步物种水平分析结果表明,各种鱼类角度和幅度随季节均有变化.Rayleigh检验结果表明,群落中不同种类在秋冬、冬春和夏秋均有显著的一致的方向变化;而春夏期间不显著.Watson-William检验结果表明,群落水平的鱼类营养生态位移动在秋冬和冬春季节转换中有显著差异.引起鱼类群落水平营养生态位在食物网空间中季节性移动的主要因素为可利用资源稳定同位素的季节变化和不同鱼类种群自身的食性季节性转变.同时,由于梅梁湾食物网鱼类群落杂食性水平高,季节性浮游初级生产力成为食物网能量流动的重要驱动作用.因此,在富营养化生态系统中,食物网群落水平营养生态位季节波动也暗示了系统稳定性的下降.定量评价食物网变化有助于认识和理解食物网结构与功能在生态学和生态系统管理等方面的重要.  相似文献   
8.
9.
Ecological regime shifts typically result in abrupt changes in ecosystem structure through several trophic levels, which leads to rapid ecosystem reconfiguration between regimes. An interesting aspect of the impact of regime shift is that alternative regimes may induce distinct shifts in energy pathways; these have been less tested than structural changes. This paper addresses this by using stable isotopes to establish the energy pathways in fish communities. We specifically focus on the impact of regime shift on changes of the energy pathways, and how the magnitude and direction of these changes affect the local community. We found that energy pathways significantly varied among the planktivorous, benthivorous, and piscivorous trophic guilds as a result of the alternative regimes. The regime shift from a clear to a turbid state altered the food web towards planktonic energy pathways and truncated food chain length, which is indicative of less ecological efficiency. This was confirmed by the adaptive foraging strategies of prevalent omnivores in the current communities. These structural and functional characteristics of trophic interactions might not facilitate classic trophic cascading effects in such a turbid regime and suppress the system’s response to environmental changes, e.g., nutrient loading, and restoration efforts in turbid to clear water regime shifts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号