首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18153篇
  免费   1610篇
  国内免费   1434篇
  2024年   24篇
  2023年   253篇
  2022年   602篇
  2021年   947篇
  2020年   630篇
  2019年   781篇
  2018年   803篇
  2017年   564篇
  2016年   782篇
  2015年   1131篇
  2014年   1303篇
  2013年   1459篇
  2012年   1688篇
  2011年   1423篇
  2010年   886篇
  2009年   788篇
  2008年   893篇
  2007年   812篇
  2006年   722篇
  2005年   620篇
  2004年   565篇
  2003年   439篇
  2002年   439篇
  2001年   388篇
  2000年   331篇
  1999年   308篇
  1998年   223篇
  1997年   214篇
  1996年   180篇
  1995年   159篇
  1994年   149篇
  1993年   95篇
  1992年   123篇
  1991年   94篇
  1990年   68篇
  1989年   64篇
  1988年   63篇
  1987年   47篇
  1986年   30篇
  1985年   35篇
  1984年   41篇
  1983年   16篇
  1982年   8篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
An agar-degrading marine bacterium identified as a Microscilla species was isolated from coastal California marine sediment. This organism harbored a single 101-kb circular DNA plasmid designated pSD15. The complete nucleotide sequence of pSD15 was obtained, and sequence analysis indicated a number of genes putatively encoding a variety of enzymes involved in polysaccharide utilization. The most striking feature was the occurrence of five putative agarase genes. Loss of the plasmid, which occurred at a surprisingly high frequency, was associated with loss of agarase activity, supporting the sequence analysis results.  相似文献   
2.
Food availability is important to the dynamics of animal social organizations or populations. However, the role of winter food availability in animal population dynamics is still controversial. We carried out an experimental study to test Lack’s hypothesis that reduced food in winter limits survival and spring numbers of breeding individuals of social groups, using the Mongolian gerbil (Meriones unguiculatus) as model species. We established 24 gerbil social groups in 24, 10 × 10 m, pens in September 2008. We provided wheat seeds as supplemental food in 12 enclosures from September 2008 to March 2009; the other 12 enclosures, not provided with supplemental food, served as controls. We live-trapped gerbils at a 2-week interval from September to April. Supplemental food during winter increased biweekly survival by 10% relative to that in control groups. Only four control social groups survived to the end of our study whereas all 12 food-supplemented social groups survived through our study period. Supplemental food also increased cumulative numbers of recruits and group sizes of gerbils. We conclude that winter food availability limits winter survival and spring social groups or population sizes of Mongolian gerbils.  相似文献   
3.
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.  相似文献   
4.
5.
  相似文献   
6.
Due to the fact that the flood data series of small drainage basins is relatively short, available data are often not sufficient for flood risk analysis. This presents the problem of risk analysis using very small data samples. One method that can be applied is to regard the available small samples as fuzzy information and optimize them using information diffusion technology to yield analytical results with greater reliability. In this article a risk analysis method based on information diffusion theory is applied to create a new flood risk analysis model. Application of the model is illustrated taking the Jinhuajiang and Qujiang drainage basins as examples. This is a new attempt at applying information diffusion theory in flood risk analysis. Computations based on this analytical flood risk model can yield an estimated flood damage value that is relatively accurate. This study indicates that the aforementioned model exhibits fairly stable analytical results, even when using a small set of sample data. The results also indicate that information diffusion technology is highly capable of extracting useful information and therefore improves system recognition accuracy. This method can be easily applied and the analytical results produced are easy to understand. Results are accurate enough to act as a guide in disaster situations.  相似文献   
7.
8.
9.
In total, 366 birds representing 55 species in 24 families and eight orders, were examined for chewing lice (Phthiraptera: Amblycera, Ischnocera) in two high‐altitude localities in Yunnan Province, China. In Ailaoshan, almost all of the birds examined were resident passeriforms, of which 36% were parasitized by chewing lice. In Jinshanyakou, most birds were on migration, and included both passerine and non‐passerine birds. Of the passerine birds caught in Jinshanyakou, only one bird (0.7%) was parasitized by chewing lice. The prevalence of Myrsidea and Brueelia‐complex lice on birds caught in Ailaoshan was higher than in previous reports. Of the chewing lice identifiable to species level, three represent new records for China: Actornithophilus hoplopteri (Mjöberg, 1910), Maculinirmus ljosalfar Gustafsson & Bush, 2017 and Quadraceps sinensis Timmermann, 1954. In total, 17 new host records are included, of which we describe two as new species in the Brueelia‐complex: Guimaraesiella (Cicchinella) ailaoshanensis sp. nov. ex Schoeniparus dubius dubius (Hume, 1874) and G. (C.) montisodalis sp. nov. ex Fulvetta manipurensis tonkinensis Delacour & Jabouille, 1930. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:9FC3D8EE‐2CED‐4DBE‐A1DB‐471B71260D27 .  相似文献   
10.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号