首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  28篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2000年   2篇
  1999年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有28条查询结果,搜索用时 9 毫秒
1.
A rise in the intracellular concentration of ionized calcium ([Ca2+]i) is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques, with special accent on fluorescence confocal microscopy, and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for studying the relationship between the structural organization of living smooth muscle cells (SMCs) and features of calcium signaling at the subcellular level. Applying fluorescent confocal imaging, patch-clamp recording, immunostaining, and flash photolysis techniques to freshly isolated SMCs, we have demonstrated that: (i) Ca2+ sparks are mediated by spontaneous clustered opening of ryanodine receptors (RyRs) and occur at the highest rate at preferred sites (frequent discharge sites, FDSs), the number of which depends on SMC type; (ii) FDSs are associated with sub-plasmalemmal sarcoplasmic reticulum (SR) elements, but not with polarized mitochondria; (iii) Ca2+ spark frequency increases with membrane depolarization in voltage-clamped SMCs or following neurotransmitter application to SMCs, in which the membrane potential was not controlled, leading to spark summation and resulting in a cell-wide increase in [Ca2+]i and myocyte contraction; (iv) cross-talk between RyRs and inositol trisphosphate receptors (IP3Rs) is an important determinant of the [Ca2+]i dynamics and recruits neighboring Ca2+-release sites to generate [Ca2+]i waves; (v) [Ca2+]i waves induced by depolarization of the plasma membrane or by noradrenaline or caffeine, but not by carbachol (CCh), originate at FDSs; (vi) Ca2+-dependent K+ and Cl- channels sense the local changes in [Ca2+]i during a Ca2+ spark and thereby may couple changes in [Ca2+]i within a microdomain to changes in the membrane potential, thus affecting the cell excitability; (vii) the muscarinic cation current (mI cat) does not mirror changes in [Ca2+]i, thus reflecting the complexity of [Ca2+]i — muscarinic cationic channel coupling; (viii) RyR-mediated Ca2+ release, either spontaneous or caffeine-induced, does not augment mI cat; (ix) intracellular flash release of Ca2+ is less effective in augmentation of mI cat than flash release of IP3, suggesting that IP3 may sensitize muscarinic cationic channels to Ca2+; (x) intracellular flash release of IP3 fails to augment mI cat in SMCs, in which [Ca2+]i was strongly buffered, suggesting that IP3 exerts no direct effect on muscarinic cationic channel gating, and that these channels sense an increase in [Ca2+]i rather than depletion of the IP3-dependent Ca2+ store; and (xi) predominant expression of IP3R type 1 in the peripheral SR provides a structural basis for a tight functional coupling between IP3R-mediated Ca2+ release and muscarinic cationic channel opening.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 455–465, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   
2.
Zholos  A. V.  Tsvilovskyy  V. V.  Bolton  T. B. 《Neurophysiology》2003,35(3-4):283-301
Acetylcholine, the principal neurotransmitter of the parasympathetic nervous system, evokes smooth muscle excitation and contraction by acting at the muscarinic receptors which, in many tissues, including the gastrointestinal tract, are comprised of the M2 and M3 subtypes. The opening of ion channels selective for monovalent cations (e.g., Na+ and K+) is the major mechanism of cholinergic excitation. We have studied signal transduction pathways and single cationic channel properties using patch-clamp recording and Ca2+ imaging techniques in guinea-pig single ileal myocytes. Cationic channels were found to couple to both M2 and M3 receptors via the GTP-bound Goα and phospholipase C activation, respectively. When these primarily signaling links are established, cationic channel opening can be further potentiated by membrane depolarization and an increase in the intracellular Ca2+ concentration. A strong synergism exists between the receptor occupancy by the agonist and intrinsic voltage dependence of the current as the former can effectively modulate the voltage range of cationic channel activation, while membrane depolarization produces a strong sensitizing effect. However, at potentials close to 0 mV ion flux is terminated by channel flickery block, while further depolarization induces long-lasting channel inactivation. Channel flicker is not caused by intracellular Mg2+, polyamines, or any other freely diffusible molecule and is confined to potentials around 0 mV irrespective of the driving force. Thus, it appears to be an intrinsic channel property of physiological importance as it improves conditions for the action potential discharge and propagation. Similarly, intracellular Ca2+-dependent facilitation of channel opening is counteracted by a slower desensitization. Further, the most intriguing negative control was discovered in the experiments whereby all cellular G proteins were non-selectively and persistently activated by GTPγS infusion, in which case, over time, carbachol instead of activation caused strong and almost irreversible inhibition of the cationic current. In cell-attached and outside-out membrane patches exposed to 50 μM carbachol or 200 μM internal GTPγS, the activity of three types of cationic channels was observed. They had dissimilar conductances (10, 50, and 130 pS), voltage dependence, and kinetics. The properties of the 50 pS channel are consistent with the whole-cell current behavior, at least when [Ca2+] i is “clamped” at 100 nM. The voltage-independent component of the cationic conductance, which appears at higher levels of [Ca2+] i , is likely mediated by the 130 pS channel, while the role of the 10 pS channel at present is unclear. Thus, smooth muscle cationic channels can uniquely detect and integrate many of the most important physiological signals such as the active conformation of two different muscarinic receptors, their associated G proteins and enzymes, as well as membrane potential and [Ca2+] i levels. Moreover, some signals act in synergy, while most of them, depending on the intensity, can be either stimulatory or inhibitory.  相似文献   
3.
4.
5.
6.
7.
8.
Full-length transient receptor potential (TRP) cation channel TRPC4alpha and shorter TRPC4beta lacking 84 amino acids in the cytosolic C terminus are expressed in smooth muscle and endothelial cells where they regulate membrane potential and Ca(2+) influx. In common with other "classical" TRPCs, TRPC4 is activated by G(q)/phospholipase C-coupled receptors, but the underlying mechanism remains elusive. Little is also known about any isoform-specific channel regulation. Here we show that TRPC4alpha but not TRPC4beta was strongly inhibited by intracellularly applied phosphatidylinositol 4,5-bisphosphate (PIP(2)). In contrast, several other phosphoinositides (PI), including PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), had no effect or even potentiated TRPC4alpha indicating that PIP(2) inhibits TRPC4alpha in a highly selective manner. We show that PIP(2) binds to the C terminus of TRPC4alpha but not that of TRPC4beta in vitro. Its inhibitory action was dependent on the association of TRPC4alpha with actin cytoskeleton as it was prevented by cytochalasin D treatment or by the deletion of the C-terminal PDZ-binding motif (Thr-Thr-Arg-Leu) that links TRPC4 to F-actin through the sodium-hydrogen exchanger regulatory factor and ezrin. PIP(2) breakdown appears to be a required step in TRPC4alpha channel activation as PIP(2) depletion alone was insufficient for channel opening, which additionally required Ca(2+) and pertussis toxin-sensitive G(i/o) proteins. Thus, TRPC4 channels integrate a variety of G-protein-dependent stimuli, including a PIP(2)/cytoskeleton dependence reminiscent of the TRPC4-like muscarinic agonist-activated cation channels in ileal myocytes.  相似文献   
9.
There is little information about the mechanisms by which G-protein-coupled receptors gate ion channels although many ionotropic receptors are well studied. We have investigated gating of the muscarinic cationic channel, which mediates the excitatory effect of acetylcholine in smooth muscles, and proposed a scheme consisting of four pairs of closed and open states. Channel kinetics appeared to be the same in cell-attached or outside-out patches whether the channel was activated by carbachol application or by intracellular dialysis with GTPgammaS. Since in the latter case G-proteins are permanently active, it is concluded that the cationic channel is the major determinant of its own gating, similarly to the K(ACh) channel (Ivanova-Nikolova, T.T., and G.E. Breitwieser. 1997. J. Gen. Physiol. 109:245-253). Analysis of adjacent-state dwell times revealed connections between the states that showed features conserved among many other ligand-gated ion channels (e.g., nAChR, BK(Ca) channel). Open probability (P(O)) of the cationic channel was increased by membrane depolarization consistent with the prominent U-shaped I-V relationship of the muscarinic whole-cell current at negative potentials. Membrane potential affected transitions within each closed-open state pair but had little effect on transitions between pairs; thus, the latter are likely to be caused by interactions of the channel with its ligands, e.g., Ca(2+) and Galphao-GTP. Channel activity was highly heterogeneous, as was evident from the prominent cycling behavior when P(O) was measured over 5-s intervals. This was related to the variable frequency of openings (as in the K(ACh) channel) and, especially, to the number of long openings between consecutive long shuttings. Analysis of the underlying Markov chain in terms of probabilities allowed us to evaluate the contribution of each open state to the integral current (from shortest to longest open state: 0.1, 3, 24, and 73%) as P(O) increased 525-fold in three stages.  相似文献   
10.
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号