首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  国内免费   6篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2017年   2篇
  2015年   3篇
  2014年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
排序方式: 共有47条查询结果,搜索用时 29 毫秒
1.
2.
Apoptin is a small molecular weight protein encoded by the VP3 gene of chicken anemia virus (CAV). It can induce apoptosis of tumor cells and play anti-tumorigenic functions. In this study, we identified a time-dependent inhibitory role of apoptin on the viability of HCT116 cells. We also demonstrated that apoptin induces pyroptosis through cleaved caspase 3, and with a concomitant cleavage of gasdermin E (GSDME) rather than GSDMD. GSDME knockdown switched the apoptin-induced cell death from pyroptosis to apoptosis in vitro. Furthermore, we demonstrated that the effect of apoptin on GSDME-dependent pyroptosis could be mitigated by caspase-3 and caspase-9 siRNA knockdown. Additionally, apoptin enhanced the intracellular reactive oxygen species (ROS), causing aggregation of the mitochondrial membrane protein Tom20. Moreover, bax and cytochrome c were released to the activating caspase-9, eventually triggering pyroptosis. Therefore, GSDME mediates the apoptin-induced pyroptosis through the mitochondrial apoptotic pathway. Finally, using nude mice xenografted with HCT116 cells, we found that apoptin induces pyroptosis and significantly inhibits tumor growth. Based on this mechanism, apoptin may provide a new strategy for colorectal cancer therapy.  相似文献   
3.
Malic enzymes catalyze the oxidative decarboxylation of L-malate to pyruvate and CO(2) with the reduction of the NAD(P)(+) cofactor in the presence of divalent cations. We report the crystal structures at up to 2.1 A resolution of human mitochondrial NAD(P)(+)-dependent malic enzyme in different pentary complexes with the natural substrate malate or pyruvate, the dinucleotide cofactor NAD(+) or NADH, the divalent cation Mn(2+), and the allosteric activator fumarate. Malate is bound deep in the active site, providing two ligands for the cation, and its C4 carboxylate group is out of plane with the C1-C2-C3 atoms, facilitating decarboxylation. The divalent cation is positioned optimally to catalyze the entire reaction. Lys183 is the general base for the oxidation step, extracting the proton from the C2 hydroxyl of malate. Tyr112-Lys183 functions as the general acid-base pair to catalyze the tautomerization of the enolpyruvate product from decarboxylation to pyruvate.  相似文献   
4.
The open reading frame TM1643 of Thermotoga maritima belongs to a large family of proteins, with homologues in bacteria, archaea, and eukaryotes. TM1643 is found in an operon with two other genes that encode enzymes involved in the biosynthesis of NAD. In several bacteria, the gene in the position occupied by TM1643 encodes an aspartate oxidase (NadB), which synthesizes iminoaspartate as a substrate for NadA, the next enzyme in the pathway. The amino acid sequence of TM1643 does not share any recognizable homology with aspartate oxidase or with other proteins of known functions or structures. To help define the biological functions of TM1643, we determined its crystal structure at 2.6A resolution and performed a series of screens for enzymatic function. The structure reveals the presence of an N-terminal Rossmann fold domain with a bound NAD(+) cofactor and a C-terminal alpha+beta domain. The structural information suggests that TM1643 may be a dehydrogenase and the active site of the enzyme is located at the interface between the two domains. The enzymatic characterization of TM1643 revealed that it possesses NAD or NADP-dependent dehydrogenase activity toward l-aspartate but no aspartate oxidase activity. The product of the aspartate dehydrogenase activity is also iminoaspartate. Therefore, our studies demonstrate that two different enzymes, an oxidase and a dehydrogenase, may have evolved to catalyze the first step of NAD biosynthesis in prokaryotes. TM1643 establishes a new class of amino acid dehydrogenases.  相似文献   
5.
6.
A rapid, prolific and reproducible protocol for in vitro shoot regeneration from mature cotyledons of Platanus acerifolia has been developed. The influences of different plant growth regulator (PGR) combinations and donor seedling ages on shoot regeneration were investigated. The results showed that the application of BA in conjunction with NAA was the most effective PGR combination for the induction of shoot regeneration. When cotyledon explants of 5-day-old seedlings were incubated on MS basal medium supplemented with 4.0 mg L?1 BA and 0.2 mg L?1 NAA, 67.6?±?4.9% of the cotyledon segments produced adventitious shoots. These regenerated shoots were initially formed as stunted rosette cluster forms and were encouraged to elongate to produce distinct shoots by transfer onto MS medium containing 0.5 mg L?1 BA and 0.05 mg L?1 NAA; the resulting mean number of adventitious shoots per explant was 5.81?±?0.36. The elongated shoots were readily induced to root (i.e. 89.3% of shoots) by incubation on ½-strength MS medium supplemented with 0.1 mg L?1 IBA. This is the first report of an efficient in vitro shoot regeneration protocol for P. acerifolia through direct organogenesis using cotyledon explants. Hence, this provides a more efficient basis for the Agrobacterium-mediated genetic transformation of Platanus than previously available.  相似文献   
7.
We designed nine endohedral dodecahedrane heterodimers H@C20Hn-C20Hn@M (M = Cu, Ag, and Au, n = 15, 18, and 19) that may act as single-molecule spin switches, and we predicted theoretically that the ground states of the dimmers shift from low-spin states (S = 0) to the high-spin states (S = 1) under an external electric field applied parallel or perpendicular to the molecular symmetry axes, consisting well with the analyses of Stark effect. Molecular orbitals analyses provide an intuitive insight into the spin crossover behavior. This study expands the application of endohedral chemistry and provides new molecules for designing single-molecule spin switch.  相似文献   
8.
在松嫩草原羊草草地上通过小区围栏放牧,对不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化进行了分析。结果表明,羊草和芦苇在生长季初期茎基部的可溶性碳水化合物含量最低,分别为7.12%和3.95%,随着季节推移逐渐增加;叶片可溶性碳水化合物含量随季节推移的变化不大;羊草返青比芦苇早,从而造成5月份实验开始时两种禾草茎基部和叶片可溶性碳水化合物的差异;一定程度的放牧(本实验条件下为P4和P5小区)有利于牧草可溶性碳水化合物的提高,促进牧草再生氮素含量在生长季初期最大,随季节推移逐渐降低,与其物候期相一致;适当放牧能够刺激根对土壤中氮素的吸收,使其向地上部分转移,提高牧草的营养价值。  相似文献   
9.
本研究以一株中度耐热耐碱放线菌--绿色糖单孢菌(Saccharomonospora viridis)为研究对象,用16 L发酵罐对该菌进行了木素过氧化物酶(lignin peroxidases, LiP)的诱导发酵,确定了最适的产酶工艺条件:接种量为10%,C/N为1∶3,搅拌速度为250 r/min,通气量为5 L/min,通过控制通气量和调整搅拌转速,使溶氧维持在35%以上,此条件下绿色糖单孢菌较摇瓶实验提前将近24 h达到产酶高峰,酶活最高可达0.41 U/ml;同时在发酵罐中测定该菌株的生长曲线和代谢曲线以确定其发酵代谢规律.  相似文献   
10.
The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号