首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   10篇
  国内免费   22篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   13篇
  2013年   4篇
  2012年   11篇
  2011年   9篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有140条查询结果,搜索用时 46 毫秒
1.
用透明因法和福林──酚法筛选了21种植物中的蛋白酶活性抑制剂,其中来自鼓皮、高粱、玉米和土豆的抑制剂的活性在本研究条件下达50%以上。进一步研究了麸皮、玉米两种抑制剂在不同温度和pH值下的稳定性,结果表明,两者的稳定性相差甚远,是两类不同的抑制剂。玉米抑制剂比麸皮抑制剂更稳定。  相似文献   
2.
Blood serum is arguably the most analyzed biofluid for disease prediction and diagnosis. Herein, we benchmarked five different serum abundant protein depletion (SAPD) kits with regard to the identification of disease-specific biomarkers in human serum using bottom-up proteomics. As expected, the IgG removal efficiency among the SAPD kits is highly variable, ranging from 70% to 93%. A pairwise comparison of database search results showed a 10%–19% variation in protein identification among the kits. Immunocapturing-based SAPD kits against IgG and albumin outperformed the others in the removal of these two abundant proteins. Conversely, non-antibody-based methods (i.e., kits using ion exchange resins) and kits leveraging a multi-antibody approach were proven to be less efficient in depleting IgG/albumin from samples but led to the highest number of identified peptides. Notably, our results indicate that different cancer biomarkers could be enriched up to 10% depending on the utilized SAPD kit compared with the undepleted sample. Additionally, functional analysis of the bottom-up proteomic results revealed that different SAPD kits enrich distinct disease- and pathway-specific protein sets. Overall, our study emphasizes that a careful selection of the appropriate commercial SAPD kit is crucial for the analysis of disease biomarkers in serum by shotgun proteomics.  相似文献   
3.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   
4.
5.
呼吸道合胞病毒(Respiratory syncytial virus,RSV)是引起严重急性呼吸道感染(Severe acute respiratory infection,SARI)的一个重要病原,尤其以5岁以下儿童为主.为了解河南省漯河市SARI住院患者中RSV感染的流行病学和临床特征,为RSV预防控制及临床诊疗提供科学数据,本研究采集2017年10月至2020年8月河南省漯河市SARI住院病例的咽拭子,并收集流行病学和临床信息.采用荧光定量PCR方法鉴定RSV A/B阳性病例,分析其流行病学和临床特征.结果显示,本研究共入组1335例SARI病例,其中220例(16.48%)为RSV阳性,A和B亚型分别占64.55%和30.45%.RSV感染以5岁以下儿童为主(占91.36%),2岁以下婴幼儿占RSV感染病例的一半以上(占55.37%).RSV流行高峰出现在11月-次年1月,不同年份流行季可前后相差一个月.A﹑B亚型在不同月份可单独流行也可共流行.受新型冠状病毒肺炎疫情影响,2020年2-8月SARI病例数较往年同期减少60%以上,RSV阳性率在2020年2-8月降低为0.与非RSV感染组相比,RSV更易感染2岁以下儿童,下呼吸道感染占比更高(以支气管肺炎为主).本研究通过近3年SARI病例监测,揭示河南省漯河市RSV感染以冬春季常见,以下呼吸道感染为主,主要感染5岁以下儿童,其中2岁以下婴幼儿是防控重点人群.新型冠状病毒肺炎流行期间,由于限制性防控措施的干预,RSV感染大大降低.本研究将为RSV疫苗和单克隆抗体等预防性干预手段的使用策略提供基础数据.  相似文献   
6.
Background aimsToll-like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen-associated molecular patterns (PAMPs).MethodsIn the present study, we investigated the expression and role of TLRs on human umbilical cord mesenchymal stromal cells (UC-MSCs). The proliferation, differentiation and immunoregulatory activity of UC-MSCs primed with or without TLR ligands were determined.ResultsAt the RNA level, the expression of TLR2, 4, 6 and 9 was relatively higher than that of other TLRs. However, TLR3 and TLR4 expression were relatively higher at the protein level. UC-MSCs expressed functional TLRs by nuclear factor-κB activation and cytokine expression assay. Poly-inosinic acid:cytidylic acid [Poly(I:C)] stimulation inhibited the proliferation of UC-MSCs, but the ligand of other TLRs had no significant effect. Poly(I:C) stimulation enhanced the adipogenic differentiation capability of UC-MSCs, but lipopolysaccharide inhibited the adipogenic differentiation. Poly(I:C) and CpG-oligonucleotide promoted the immunosuppressive potentiality of UC-MSCs, accompanied with the phosphorylation of interferon regulatory factor 3 (IRF3) and increased expression of indoleamine 2,3-dioxygenase and interferon β, whereas activation of other TLR ligands (synthetic analog fibroblast-stimulating lipopeptide-1 and lipopolysaccharide) failed to affect the immunoregulatory activity of UC-MSCs.ConclusionsTaken together, our data demonstrated that TLR activation influenced the function of UC-MSCs, which might have important implications in future efforts to explore the clinical potentials of UC-MSCs.  相似文献   
7.

Objective

To compare multi-detector computed tomography (MDCT) with cardiac catheterization and transthoracic echocardiography (TTE) in comprehensive evaluation of the global cardiovascular anatomy in patients with pulmonary atresia with ventricular septal defect (PA-VSD).

Methods

The clinical and imaging data of 116 patients with PA-VSD confirmed by surgery were reviewed. Using findings at surgery as the reference standard, data from MDCT, TTE and catheterization were reviewed for assessment of native pulmonary vasculature and intracardiac defects.

Results

MDCT was more accurate than catheterization and TTE in identification of native pulmonary arteries. MDCT is also the most accurate test for delineation of the major aortopulmonary collateral arteries. The inter-modality agreement for evaluation of overriding aorta and VSD were both excellent. In the subgroup with surgical correlation, excellent agreement was found between TTE and surgery, and substantial agreement was also found at MDCT.

Conclusion

MDCT can correctly delineate the native pulmonary vasculatures and intracardiac defects and may be a reliable method for noninvasive assessment of global cardiovascular abnormalities in patients with PA-VSD.  相似文献   
8.
Human nasopharyngeal carcinoma is a common head and neck malignancy with high incidence in Southeast Asia and Southern China. It is necessary to develop safe, effective and inexpensive anticancer agents to improve the therapeutics of patients with nasopharyngeal carcinoma. A series of small molecular compounds based on 6‐(pyrimidin‐4‐yl)‐1H‐indazole were synthesized and evaluated for antiproliferative activities against human nasopharyngeal carcinoma cell lines SUNE1. Compounds 6b , 6c , 6e and 6l showed potent antiproliferative activities similar to positive control drug cisplatin in vitro with lower nephrotoxicity than it. N‐[4‐(1H‐Indazol‐6‐yl)pyrimidin‐2‐yl]benzene‐1,3‐diamine ( 6l ) was selected for further study. It was found that 6l induced mitochondria‐mediated apoptosis and G2/M phase arrest in SUNE1 cells. Furthermore, compound 6l at 10 mg/kg can suppress the growth of an implanted SUNE1 xenograft with a TGI% (tumor growth inhibition) value of 50 % and did not cause serious side effects in BALB/c nude mice. This study suggests that 6‐(pyrimidin‐4‐yl)‐1H‐indazole derivatives are a series of small molecule compounds with anti‐nasopharyngeal carcinoma activities.  相似文献   
9.
Ribosomal S6 kinase 1 (S6K1), as a key regulator of mRNA translation, plays an important role in cell cycle progression through the G(1) phase of proliferating cells and in the synaptic plasticity of terminally differentiated neurons. Activation of S6K1 involves the phosphorylation of its multiple Ser/Thr residues, including the proline-directed sites (Ser-411, Ser-418, Thr-421, and Ser-424) in the autoinhibitory domain near the C terminus. Phosphorylation at Thr-389 is also a crucial event in S6K1 activation. Here, we report that S6K1 phosphorylation at Ser-411 is required for the rapamycin-sensitive phosphorylation of Thr-389 and the subsequent activation of S6K1. Mutation of Ser-411 to Ala ablated insulin-induced Thr-389 phosphorylation and S6K1 activation, whereas mutation mimicking Ser-411 phosphorylation did not show any effect. Furthermore, phosphomimetic mutation of Thr-389 overcame the inhibitory effect of the mutation S411A. Thus, Ser-411 phosphorylation regulates S6K1 activation via the control of Thr-389 phosphorylation. In nervous system neurons, Cdk5-p35 kinase associates with S6K1 via the direct interaction between p35 and S6K1 and catalyzes S6K1 phosphorylation specifically at Ser-411. Inhibition of the Cdk5 activity or suppression of Cdk5 expression blocked S6K1 phosphorylation at Ser-411 and Thr-389, resulting in S6K1 inactivation. Similar results were obtained by treating asynchronous populations of proliferating cells with the CDK inhibitor compound roscovitine. Altogether, our findings suggest a novel mechanism by which the CDK-mediated phosphorylation regulates the activation of S6K1.  相似文献   
10.
The purpose of this study is to better understand the role of interleukin 35 (IL35) in esophageal carcinoma by comparing the mRNA level in Barrett's esophageal mucosa and in matched normal squamous mucosa and to understand how the diagnosis model works with two other genes: hepatocyte nuclear factor 1B (HNF1B) and cAMP responsive element binding protein 3-like 1 (CREB3L1). By comparing carcinoma tissue and normal tissue samples, we extracted all the differentially expressed mRNAs. The bioinformatics analysis resulted in the discovery of three prominent genes. Eventually, the three genes were utilized to train a deep-learning model. An additional wet experiment was conducted to validate the effect of IL35. All the differentially expressed genes were enriched into nine groups, each of which has specific biological functions. Given that the three significant genes HNF1B, CREB3L1, and IL35 as diagnostic features, a deep-learning model was constructed, reaching an accuracy of 93% in the training set and 87% in the test set. Our findings suggest that IL35, along with the other two signatures, can distinguish esophageal tumor samples from normal samples precisely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号