首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   24篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1977年   1篇
排序方式: 共有89条查询结果,搜索用时 46 毫秒
1.
2.
Pseudomonas putida B2 is able to grow on o-nitrophenol (ONP) as the sole source of carbon and nitrogen. ONP was converted by a nitrophenol oxygenase to nitrite and catechol. Catechol was then attacked by a catechol 1,2-dioxygenase and further degraded through an ortho-cleavage pathway. ONP derivatives which were para-substituted with a methyl-, chloro-, carboxy-, formyl- or nitro-group failed to support growth of strain B2. Relevant catabolic enzymes were characterized to analyze why these derivatives were not mineralized. Nitrophenol oxygenase of strain B2 is a soluble, NADPH-dependent enzyme that is stimulated by magnesium, manganese, and calcium ions. It is active toward ONP, 4-methyl-, 4-chloro-, and to a lesser extent, 4-formyl-ONP but not toward 4-carboxy- or 4-nitro-ONP. In addition, 4-formyl-, 4-carboxy-, and 4-nitro-ONP failed to induce the formation of nitrophenol oxygenase. Catechol 1,2-dioxygenase of strain B2 is active toward catechol and 4-methyl-catechol but only poorly active toward chlorinated catechols. 4-Methyl-catechol is likely to be degraded to methyl-lactones, which are often dead-end metabolites in bacteria. Thus, of the compounds tested, only unsubstituted ONP acts as an inducer and substrate for all of the enzymes of a productive catabolic pathway.  相似文献   
3.
DNA fragments containing the xylD and xylL genes of TOL plasmid pWW0 -161 of Pseudomonas putida, which code for the catabolic enzymes toluate 1,2-dioxygenase and dihydrodihydroxybenzoic acid dehydrogenase, respectively, and the nahG gene of the NAH plasmid NAH7 , which codes for salicylate hydroxylase, were cloned in pBR322 vector plasmid. Deletion and insertion mutagenesis were used to localize these genes with respect to crucial endonuclease cleavage sites. The pBR322-based plasmids were ligated to the broad host range cloning vector pKT231 , or derivatives of it, and the hybrid plasmids were introduced into Pseudomonas sp. B13( WR1 ), a bacterium able to degrade 3-chlorobenzoate but not 4-chlorobenzoate, 3,5- dichlorobenzoate , salicylate, or chlorosalicylates . The cloned xylD gene expanded the catabolic range of WR1 to include 4-chlorobenzoate, whereas the cloned xylD - xylL genes enabled the isolation of derivatives of WR1 that degraded 3-chlorobenzoate, 4-chlorobenzoate, and 3,5- dichlorobenzoate . The cloned nahG gene extended the catabolic range of WR1 to include salicylate and 3-, 4-, and 5- chlorosalicylate .  相似文献   
4.
An optical method to quantify the fungal hyphae within decomposing leaves of deciduous trees was developed. The plant matrix was partially destroyed under hydrolytic conditions, and fungal hyphae and cellulose residues within the leaves were stained with Calcofluor M2R. Cellulose residues were subsequently depolymerized by cellulase, and fungal hyphae were separated from the remaining plant matrix with a pressurized air-water mixture. An image analysis program to quantify the fungal hyphae was written. The program included the recognition of fungal hyphae, the elimination of stomata from the images, and the measuring of lengths of fungal hyphae. The optical method was verified by a chemical method relying on glucosamine as an indicator of fungal biomass. The fungal biomass in leaves of Fagus silvatica and Quercus petraea at early states of decomposition was 0.2 to 0.4% of the leaf weight. The biomass reached a maximum within 2 to 4 weeks (optical method, 0.5 to 0.7%; chemical method, 1 to 1.4% of the initial leaf weight) and decreased thereafter.  相似文献   
5.
Exudates from Streptomyces griseoflavus Tü 2484 effectively mediated electron transfer between hydrogen sulfide and various nitrobenzenes. In general, pseudo-first-order kinetics were observed, except for the initial phase of the reaction at higher pH values. Under fixed pH and Dh conditions, linear free energy relationships were found between the logarithms of the reaction rate constants and the one-electron reduction potentials of the nitroaromatic compounds. No competition was observed between various compounds. Comparison of the results of this study with the results of experiments conducted with model quinones and an iron porphyrin suggest that the secondary metabolites cinnaquinone and dicinnaquinone, excreted by strain Tü 2484 on the order of 100 mg/liter, are responsible for the catalytic activity of the exudate. Further support for this hypothesis comes from the facts that the catalytic activity of the exudate became prominent only after the growth phase of the microorganisms and that the mediating substances have a molecular weight of less than 3,000.  相似文献   
6.

Plant natural products (PNP) (e.g., secondary vegetal metabolites and their derivatives) have been a productive source of active ingredients for the pharmaceutical industry. The High Throughput Screening of Plant Natural Products (PNP-HTS) with extracts or isolated compounds has shown to be time consuming, expensive, and not as successful as expected. Recently building upon the innovative fragment-based drug discovery (FBDD) a disruptive approach was developed based on PNP. The fragment approach involves elaboration and/or isolation of weakly binding small molecules with molecular weights between 150 and 250 Da. This method is fundamentally different from HTS in almost every aspect (i.e., size of the compound library, screening methods, and optimization steps from hit to lead). Due to their nature, vegetal natural fragments have unique three-dimensional (3D) properties, high Fsp3, low aromaticity, and large chemo-diversities which represent potential opportunities for developing novel drugs. Preliminary results using vegetal natural fragments appear to be a promising and emerging field which offers valuable prospects for developing new drugs.

  相似文献   
7.
Free-living nitrogen-fixing prokaryotes (diazotrophs) are ubiquitous in soil and are phylogenetically and physiologically highly diverse. Molecular methods based on universal PCR detection of the nifH marker gene have been successfully applied to describe diazotroph populations in the environment. However, the use of highly degenerate primers and low-stringency amplification conditions render these methods prone to amplification bias, while less degenerate primer sets will not amplify all nifH genes. We have developed a fixed-primer-site approach with six PCR protocols using less degenerate to nondegenerate primer sets that all amplify the same nifH fragment as a previously published PCR protocol for universal amplification. These protocols target different groups of diazotrophs and allowed for direct comparison of the PCR products by use of restriction fragment length polymorphism fingerprinting. The new protocols were optimized on DNA from 14 reference strains and were subsequently tested with bulk DNA extracts from six soils. These analyses revealed that the new PCR primer sets amplified nifH sequences that were not detected by the universal primer set. Furthermore, they were better suited to distinguish between diazotroph populations in the different soils. Because the novel primer sets were not specific for monophyletic groups of diazotrophs, they do not serve as an identification tool; however, they proved powerful as fingerprinting tools for subsets of soil diazotroph communities.  相似文献   
8.
High-N(2)-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [(15)N]NO(3) and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N(2) fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N(2) fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% +/- 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% +/- 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% +/- 6%) than by group IV (81% +/- 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N(2) fixation rates by (15)N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N(2)-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N(2)-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   
9.
A food chain consisting of toluene, toluene-degrading Pseudomonas sp. PS+ and a bacterivorous flagellated amoebae Vahlkampfia sp. was established in a batch culture. This culture was amended with [U-13C]toluene and served as a model system to elucidate the flux of carbon in the food chain by quantifying bacterial biovolumes and 13C enrichment of phospholipid fatty acid (PLFA) biomarkers of the bacteria and the heterotrophic protists. Major PLFA detected in the batch co-culture included those derived from Pseudomonas sp. PS+ (16:1omega7c and 18:1omega7c) and Vahlkampfia sp. (20:4omega6c and 20:3omega6c). A numerical model including consumption of toluene by the bacteria and predation of the bacteria by the heterotrophic protists was adjusted to the measured toluene carbon, bacterial carbon and delta13C values of bacterial and protist biomass. Using this model, we estimated that 28+/-7% of the consumed toluene carbon was transformed into bacterial biomass, and 12+/-4% of the predated bacterial carbon was incorporated into heterotrophic protist biomass. Our study showed that the 13C enrichment of PLFA biomarkers coupled to biomass determination via biovolume calculations is a suitable method to trace carbon fluxes in protist-inclusive microbial food chains because it does not require the separation of protist cells from bacterial cells and soil particles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号