首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2020年   1篇
  2014年   4篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2001年   4篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
1.
Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.  相似文献   
2.
The activation of nuclear factor-B(NF-B) is required for the induction of many of the adhesionmolecules and chemokines involved in the inflammatory leukocyterecruitment to the kidney. Here we studied the effects of NF-Binhibition on the machinery crucial for monocyte infiltration of theglomerulus during inflammation. In mesangial cells (MC), the proteaseinhibitors MG-132 and N--tosyl-L-lysine chloromethyl ketone or adenoviral overexpression of IB- prevented the complete IB- degradation following tumor necrosis factor- (TNF-) stimulation. This resulted in a marked inhibition ofTNF--induced expression of mRNA and protein for the immunoglobulinmolecules intracellular adhesion molecule-1 and vascular cell adhesionmolecule-1 and the chemokines growth-related oncogene-, monocytechemoattractant protein-1, interleukin-8, or fractalkine in MC.Finally, the inhibition of IB- degradation or IB-overexpression suppressed the chemokine-induced transendothelialmonocyte chemotaxis toward MC and the chemokine-triggered firm adhesionof monocytic cells to MC. The inhibition of NF-B by pharmacologicalintervention or gene transfer may present a multimodal approach tocontrol the machinery propagating inflammatory recruitment of monocytesduring glomerular disease.

  相似文献   
3.

Background

Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14+CD16 and non-classical CD14+CD16+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that ‘non-classical’ monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression.

Methodology/Principal Findings

We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14+CD16+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14+CD16+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14+CD16+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14+CD16+, but not CD14+CD16 monocytes could directly activate collagen-producing HSC.

Conclusions/Significance

Our data demonstrate the expansion of CD14+CD16+ monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis.  相似文献   
4.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   
5.
T cell activation represents a double-edged sword in atherogenesis, as it promotes both pro-inflammatory T cell activation and atheroprotective Foxp3+ regulatory T cell (Treg) responses. Here, we investigated the role of the co-inhibitory receptor programmed cell death-1 (PD-1) in T cell activation and CD4+ T cell polarization towards pro-atherogenic or atheroprotective responses in mice. Mice deficient for both low density lipoprotein receptor and PD-1 (Ldlr−/−Pd1−/−) displayed striking increases in systemic CD4+ and CD8+ T cell activation after 9 weeks of high fat diet feeding, associated with an expansion of both pro-atherogenic IFNγ-secreting T helper 1 cells and atheroprotective Foxp3+ Tregs. Importantly, PD-1 deficiency did not affect Treg suppressive function in vitro. Notably, PD-1 deficiency exacerbated atherosclerotic lesion growth and entailed a massive infiltration of T cells in atherosclerotic lesions. In addition, aggravated hypercholesterolemia was observed in Ldlr−/−Pd1−/− mice. In conclusion, we here demonstrate that although disruption of PD-1 signaling enhances both pro- and anti-atherogenic T cell responses in Ldlr−/− mice, pro-inflammatory T cell activation prevails and enhances dyslipidemia, vascular inflammation and atherosclerosis.  相似文献   
6.
The hypothesis of this experiment was that humans in an anxious state compared with a nonanxious state are able to increase anxiety levels in other humans via their body odors. Specifically, we hypothesized that male chemosensory anxiety signals compared with neutral chemosignals increase state anxiety of female subjects. Thirteen male subjects participated in 2 different sweat donation sessions: chemosignals were collected during participation in a high rope course (anxiety condition) and in an ergometer workout (neutral condition). State and trait anxiety were evaluated in 20 female odor recipients using Spielberger's state-trait anxiety inventory in a double-blind design. Comparison of state anxiety of odor donors between control and anxiety condition differed significantly indicating that our model of anxiety induction successfully led to the expected change in emotion. Comparison of state anxiety of odor recipients showed a trend toward higher state anxiety in the anxiety condition compared with the neutral condition after 5 min of odor exposure. After 20 min of odor exposure, state anxiety of female subjects was significantly higher during the perception of sweat collected during the anxiety condition in comparison with the perception of sweat collected during the neutral condition. This experiment gives evidence that male anxiety chemosignals compared with neutral chemosignals are capable of inducing an increased state anxiety in female subjects.  相似文献   
7.
Myocardial necrosis triggers inflammatory changes and a complex cytokine cascade that are only incompletely understood. The chemokine receptor CCR1 mediates inflammatory recruitment in response to several ligands released by activated platelets and up-regulated after myocardial infarction (MI). Here, we assess the effect of CCR1 on remodelling after MI using Ccr1-deficient (Ccr1(-)(/-)) mice. MI was induced in Ccr1(-/-) or wild-type mice by proximal ligation of the left anterior descending (LAD). Mice were sacrificed and analysed at day 1, 4, 7, 14 and 21 after MI. While initial infarct areas and areas at risk did not differ between groups, infarct size increased to 20.6+/-8.4% of the left ventricle (LV) in wild-type mice by day 21 but remained at 11.2+/-1.2% of LV (P<0.05) in Ccr1(-/-) mice. This attenuation in infarct expansion was associated with preserved LV function, as analysed by isolated heart studies according to Langendorff. Left ventricular developed pressure was 84.5+/-19.8 mmHg in Ccr1(-/-) mice compared to 49.0+/-19.7 mmHg in wild-type mice (P<0.01) and coronary flow reserve was improved in Ccr1(-/-) mice. An altered post-infarct inflammatory pattern was observed in Ccr1(-/-) mice characterized by diminished neutrophil infiltration, accelerated monocyte/lymphocyte infiltration, decreased apoptosis, increased cell proliferation and earlier myofibroblast population in the infarcted tissue. In conclusion, functional impairment and structural remodelling after MI is reduced in the genetic absence of Ccr1 due to an abrogated early inflammatory recruitment of neutrophils and improved tissue healing, thus revealing a potential therapeutic target.  相似文献   
8.
Chronic inflammation drives the development of atherosclerosis, and details regarding the involvement of different leukocyte subpopulations in the pathology of this disease have recently emerged. This Review highlights the surprising contribution of granulocyte subsets and mast cells to early atherogenesis and subsequent plaque instability, and describes the complex, double-edged role of monocyte, macrophage and dendritic-cell subsets through crosstalk with T cells and vascular progenitor cells. Improved understanding of the selective contributions of specific cell types to atherogenesis will pave the way for new targeted approaches to therapy.  相似文献   
9.
A sequential model involving chemokines has been proposed for leukocyte extravasation into areas of inflammation; however, site-specific aspects remain to be elucidated. Hence, we studied the role of chemokines produced by mesangial (MC) or glomerular endothelial cells (GEC) and their receptors in glomerular recruitment of monocytes. Stimulation of MC with TNF-alpha up-regulated mRNA and protein of CC and CXC chemokines but not constitutive expression of the CX(3)C chemokine fractalkine. While growth-related activity (GRO)-alpha was immobilized to MC proteoglycans, monocyte chemotactic protein (MCP)-1 was secreted into the soluble phase. Firm adhesion and sequestration of monocytes on activated MC was supported by the GRO-alpha receptor CXCR2 and to a lesser extent by CX(3)CR, whereas the MCP-1 receptor CCR2 contributed to their transendothelial chemotaxis toward activated MC. In contrast, fractalkine mRNA and protein was induced by TNF-alpha in transformed rat GEC, and both CXCR2 and CX(3)CR mediated monocyte arrest on GEC in shear flow. The relevance of these mechanisms was confirmed in a rat nephrotoxic nephritis model where acute glomerular macrophage recruitment was profoundly inhibited by blocking CXCR2 or CCR2. In conclusion, our results epitomize a combinatorial model in which chemokines play specialized roles in driving glomerular monocyte recruitment and emphasize an important role for CXCR2 in macrophage infiltration during early phases of nephrotoxic nephritis.  相似文献   
10.
Atherosclerosis as the underlying mechanisms of myocardial infarction, stroke and peripheral artery disease remains the major cause of morbidity and mortality in developed countries. Recent developments in vascular biology have indicated that atherosclerosis can be best characterized as a chronic inflammatory disease of the vessel wall that promotes lesion development and progression. Chemokines regulate and control these processes by orchestrating adhesive interactions of circulating blood cells with the arterial wall and their subsequent extravasation. Exhibiting a high degree of specialization and cooperation, different chemokines mediate distinct steps during the atherogenic recruitment of monocytes and T cells. This diversity of chemokine expression and function might lead to the identification of selective therapeutic targets for the prevention and treatment of atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号