首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  15篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2004年   3篇
  2002年   1篇
  2000年   5篇
  1999年   2篇
  1990年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
Only few data are available on the effect of training on phospholipid metabolism in skeletal muscles. The aim of the present study was to examine the effect of 6 weeks of endurance training on the content of particular phospholipid fractions and on the incorporation of blood-borne [14C]-palmitic acid into the phospholipids in different skeletal muscles (white and red sections of the gastrocnemius, the soleus and the diaphragm) of the rat. Lipids were extracted from the muscles and separated using thin-layer chromatography into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, cardiolipin and neutral lipids (this fraction being composed mostly of triacylglycerols). It was found that training did not affect the content of any phospholipid fraction in soleus muscle. It increased the content of sphingomyelin in white gastrocnemius muscle, cardiolipin and phosphatidylethanolamine in red gastrocnemius muscle and phosphatidylinositol in white gastrocnemius muscle and diaphragm. The total phospholipid content in red gastrocnemius muscle of the trained group was higher than in the control group. Training reduced the specific activity of sphingomyelin and cardiolipin in all muscles, phosphatidylcholine in soleus, red, and white gastrocnemius muscles, phosphatidylserine in all muscles, phosphatidylinositol in all except the soleus muscle, and phosphatidylethanolamine in hindleg muscles, but not in the diaphragm compared to the corresponding values in the sedentary group. It was concluded that endurance training affects skeletal muscle phospholipid content and the rate of incorporation of the blood-borne [14C]palmitic acid into the phospholipid moieties.  相似文献   
2.
A low-carbohydrate (L-CHO) diet has been shown to shift the lactate threshold toward higher workloads. The aim of the present study was to examine the effect of an L-CHO diet on the ammonia threshold and to compare it with the lactate threshold in men. The plasma catecholamine threshold was also measured. Eight young, untrained men participated in the study. Two exercise tests with graded workload were performed. The workload was increased every 3 minutes by 40 W until volitional exhaustion. The first test was performed after 3 days of a controlled mixed diet. After the first test, the mixed diet was switched to a L-CHO diet. Three days later the same test was repeated. The blood concentration of lactate, ammonia, noradrenaline, and adrenaline was measured before and after each workload in both groups. It was found that the concentration of the examined compounds in the blood increases exponentially with graded workload after each kind of diet. This led us to calculate the blood ammonia, lactate, epinephrine, and norepinephrine thresholds. The thresholds were defined as points at which the concentration of a given compound starts to increase in a nonlinear fashion, which is calculated using 2 segmental linear regressions. After the mixed diet, the threshold for each compound occurs at the same workload. The L-CHO diet resulted in dissociation of the lactate threshold from the ammonia threshold: the lactate threshold was shifted toward a higher workload, whereas the ammonia threshold was shifted toward a lower workload. The norepinephrine threshold was also shifted toward a lower workload, and the epinephrine threshold remained unchanged. The results obtained indicate that an L-CHO diet accelerates production of ammonia and delays production of lactate during graded exercise, as well as that diet must be strictly controlled when ammonia and lactate thresholds are measured.  相似文献   
3.
Diabetes is associated with disturbances of brain activity and cognitive impairment. We hypothesize that ceramides may constitute an important contribution to diabetes-linked neuro-dysfunction. In our study we used rats injected with streptozotocin (STZ) as a model of severe hyperglycemia. Using the gas-liquid chromatography technique we found a significant increase of ceramide content in brains and a decrease in plasma of diabetic rats. The inhibitor of serine palmitoyltransferase, myriocin, reduced ceramide generation in hyperglycemic brains, although injected alone it exerted a paradoxical effect of ceramide upregulation. Myriocin had no impact on ceramide concentration in the plasma of either control or diabetic rats. The level of ceramide saturated fatty acids was elevated whereas the level of ceramide poly-unsaturated fatty acids was downregulated in brains of all experimental groups. The concentration of ceramide mono-unsaturated fatty acids remained unchanged. The pattern of individual ceramide species was altered depending on treatment. We noted an STZ-evoked increase of brain ceramide C16:0, C18:0 and C20:0 and a strong decline in ceramide C18:2 fatty acid levels. Some changes of brain ceramide pattern were modified by myriocin. We found a decreased amount of total ceramide-ω-6 fatty acids in STZ-treated rat brains and no changes in ceramide-ω-3 concentration. We conclude that ceramides may be important mediators of diabetes-accompanied brain dysfunction.  相似文献   
4.
The aim of the present study was to examine the effect of triiodothyronine (T3) on the content of phospholipids and on the incorporation of blood-borne palmitic acid into the phospholipid moieties in the nuclei of the rat liver. T3 was administered daily for 7 days, 10 microg x 100 g(-1). The control rats were treated with saline. Each rat received 14C-palmitic acid, intravenously suspended in serum. 30 min after administration of the label, samples of the liver were taken. The nuclei were isolated in sucrose gradient. Phospholipids were extracted from the nuclei fraction and from the liver homogenate. They were separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. The content and radioactivity of each fraction was measured. It was found that treatment with T3 reduced the content of phosphatidylinositol and increased the content of cardiolipin in the nuclear fraction. In the liver homogenate, the content of phosphatidylinositol decreased and the content of phosphatidylethanolamine and cardiolipin increased after treatment with T3. The total content of phospholipids after treatment with T3 remained unchanged, both in the nuclear fraction and in the liver homogenate. T3 reduced the specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin and had no effect on the specific activity of sphingomyelin and phosphatidylinositol both in the fraction of the nuclei and the liver homogenate. It is concluded that excess of triiodothyronine affects the content of phospholipids in the nuclei. The changes in the content of phospholipids in the nuclei largely reflect changes in their content in the liver.  相似文献   
5.
In the rat, muscle glycogen is mobilized during the first stage of exercise, despite normoglycaemia. The aim of the present study was to examine if this process could be prevented or reduced by hyperglycaemia. Three experiments were carried out: in the first, rats were forced to run on a treadmill; in the second the gastrocnemius muscle group was made to contract by stimulation of the sciatic nerve and in the third adrenaline was administered subcutaneously. Each group was divided into two subgroups: control and enriched with glucose (hyperglycaemic). It was shown that hyperglycaemia has no effect on running-induced glycogen mobilization in hind-limb muscles of different fibre composition but prevented it totally in diaphragm muscle. Hyperglycaemia also did not affect the glycogen mobilization induced by stimulation of the sciatic nerve. However, it delayed and reduced markedly the glycogenolytic effect of adrenaline. It is concluded that increased glycogenolysis in muscles at the beginning of exercise may be a consequence of a delay in the activation of glucose transporting mechanisms in muscle cells.  相似文献   
6.
The aim of the present study was to investigate whether lipid metabolism in the nuclei is affected by changes in the metabolism of free fatty acids in the liver. The experiments were carried out on 3 groups of rats: 1 - control-male, 2 - female, and 3 - male, treated with bezafibrate (a peroxisome proliferator). The rats received 14C-palmitic acid intravenously. Thirty min later liver samples and blood from the abdominal aorta were taken. The liver nuclei were isolated in sucrose gradient. Lipids were extracted from the nuclei and the liver homogenate and subsequently separated into the following fractions: phospholipids, mono, di- and triacylglycerols, free fatty acids, cholesterol and cholesterol esters. The radioactivity of each fraction was counted. Furthermore, the content of free fatty acids and the fatty acid binding proteins was measured. It was found that radioactivity was present in each lipid fraction obtained from the liver homogenate and from the nuclei. In the female group, the total radioactivity of lipids in the liver homogenate was lower, whereas in the nuclei it was higher in comparison to the male group. The reduction in the radioactivity in the liver was mostly accounted for by decreased radioactivity in the fraction oftriacylglycerols and phospholipids. In the nuclei, the radioactivity of the fraction of phospholipids, free fatty acids and diacylglycerols was elevated. Bezafibrate did not affect the total radioactivity of lipids in the liver and reduced it in the nuclei. In the liver, the drug increased radioactivity mostly in the fraction of phospholipids and reduced it mainly in the fraction of triacylglycerols. In the nuclei, the radioactivity of each lipid fraction examined was reduced. The content of the fraction of free fatty acids in the liver and in the nuclei in the female and in the bezafibrate-treated groups did not differ from the respective value in the control group. The content of fatty acid binding proteins in the nuclei of the female and bezafibrate-treated groups increased in parallel to the elevation in their content in the cytosol. It is concluded that the female sex hormones and bezafibrate influence the transport of selected lipids into the nuclei. The effects seem to be a consequence of the action of these factors directly on the nucleus.  相似文献   
7.
The aim of the present study was to examine the effect of acute streptozotocin diabetes on long chain fatty acid content and composition in different lipid classes of particular muscle types in the rat. Two days after streptozotocin administration, rats were anesthetised, and the white and red sections of the gastrocnemius, the soleus and the blood were taken. Lipids were extracted with chloroform/methanol and separated into different fractions (phospholipids, free fatty acids, di- and triacylglycerols) by means of thin layer chromatography. Fatty acids of each fraction were identified and quantified by means of gas-liquid chromatography. The diabetes resulted in elevation of the concentration of blood glucose (over four-fold) and the plasma free fatty acid (over two-fold). Total free fatty acid content in the muscles of diabetic rats increased by 26% in the white, 24% in the red gastrocnemius and 21% in the soleus. There were also changes in the composition of that fraction in each muscle. Diacylglycerol fatty acid content was elevated in both parts of the gastrocnemius (the white part by 15%, the red part by 44%) and remained stable in the soleus of the diabetic rats. The content of triacylglycerol fatty acids was elevated only in the red gastrocnemius in the diabetic group (by 112%), but changes in fatty acid composition in this fraction occurred in each muscle. The content of phospholipid fatty acids was elevated in the white gastrocnemius (by 13%) and remained stable in other muscles. There were only minor changes in phospholipid fatty acid composition in the diabetic rats. We concluded that acute insulin deficiency changes fatty acid content and composition in skeletal muscle lipids. The changes depend both on lipid fraction and muscle type.  相似文献   
8.
The aim of the present study was to examine the effect of treatment with triiodothyronine (T3) on certain aspects of phospholipid metabolism in skeletal muscles. Rats were injected with triiodothyronine (T3) daily (10 microg x 100 g(-1) b.w., s.c.) for six days. Saline-treated rats served as controls. 24 h after the last dose of T3, 14C palmitic acid suspended in the serum of a donor rat, was administered intravenously. Thirty min later, samples of the soleus, white and red section of the gastrocnemius and blood from the abdominal aorta were taken. The muscle phospholipids were extracted and separated into different fractions by means of thin layer chromatography. The following fractions were obtained: shingomeylin, phosphatidylcholine phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and cardiolipin. The phospholipids were quantified and their radioactivity was measured. The plasma free fatty acid concentration and radioactivity was also determined. Treatment with T3 reduced the content of phosphatidylinositol and phosphatidylserine in each muscle type, whereas the concentration of other phospholipids remained stable. T3 increased markedly incorporation of the blood-borne fatty acids into each phospholipid fraction in the muscles. It is concluded that an excess of T3 influences the metabolism of phospholipids in skeletal muscles.  相似文献   
9.
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.  相似文献   
10.
The aim of the present study was to examine the effect of acute streptozotocin diabetes on the content of different phospholipids and the incorporation of blood-borne 14C-palmitic acid into the phospholipid moieties in the rat liver nuclei. Diabetes was produced by intravenous administration of streptozotocin, and determinations were carried out two and seven days thereafter. Phospholipids were extracted from isolated nuclei and separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. Following that, they were quantified and radioactivity was measured. It was found that, in comparison to non-diabetic controls, two-day diabetes reduced the total content of phospholipids in the nuclei by 9.6%. The content of phospholipids in the nuclei by 9.6%. The content of phosphatidylcholine and phosphatidylserine was reduced and the content of the remaining phospholipids was stable. The specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin, based on radioactivity incorporated from 14C-palmitic acid, was elevated. Seven-day diabetes resulted in a reduction of the total phospholipid content in the nuclei by 39.4%. This was accounted for by a reduction in the content of each phospholipid fraction with the exception of cardiolipin. The specific activity of each phospholipid fraction, was elevated in this group. It is concluded that insulin is involved in the regulation of the nuclear phospholipid content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号