首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有8条查询结果,搜索用时 515 毫秒
1
1.
To investigate the behavioral consequences of exposure to whole-body irradiation such as might occur for astronauts during space flight, female C57BL/6 mice were exposed to 0, 0.1, 0.5 or 2 Gy accelerated iron ions (56Fe, Z = 26, beta = 0.9, LET = 148.2 keV/microm) of 1 GeV per nucleon using the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. Animal testing began 2 weeks after exposure and continued for 8 weeks. Under these conditions, there were few significant effects of radiation on open-field, rotorod or acoustic startle activities at any of the times examined. The lack of radiation effects in these behavioral models appears to offer reassurance to NASA mission designers. These results suggest that there may be negligible effects of HZE radiation on many behaviors during a 2-8-week period immediately after radiation.  相似文献   
2.
3.
Algal biofuels are a growing interest worldwide due to their potential in terms of sustainable greenhouse gas displacement and energy production. This article describes a comparative survey of biodiesel production and conversion yields of biodiesel via alkaline transesterification of acylglycerols extracted from the microalgae Thalassiosira pseudonana and Phaeodactylum tricornutum, grown under silicate or nitrate limitation, and that of model vegetable oils: soybean, and rapeseed oil. Acylglycerols were extracted with n-hexane and the total yield per biomass was determined by gravimetric assay. Under our conditions, the total acylglycerol yield from the microalgae studied was 13-18% of total dry weight. The biodiesel samples were analyzed using gas chromatography-flame ionization detector to determine quantitative information of residual glycerol, mono-, di-, and tri-acylglycerol concentrations in the biodiesel. All of the algal-based biodiesel demonstrated less mono-, di-, and tri-acylglycerol concentrations than the vegetable-based biodiesel under identical transesterification conditions. The fatty acid compositions of all the feedstock oils and their resultant biodiesel were also analyzed and reported. Based on the fatty acid methyl ester compositions of our samples we qualitatively assessed the suitability of the algal-derived biodiesel in terms of cetane number (CN), cold-flow properties, and oxidative stability.  相似文献   
4.
Currently Staphylococcus aureus is the predominant pathogen isolated from the respiratory tract of patients with recurrent tonsillitis. Because of an increase in multi‐drug resistant strains of S. aureus, there is a pressing need for effective treatments and preventive approaches to reduce the risk of invasive and life‐threatening infections. A preventive vaccine against S. aureus would have a tremendous clinical impact. However, multiple clinical trials have failed to identify an agent that can induce protective responses. Most trials have been based on subunit vaccines using one or a few purified antigens, which may not be enough to confer protection. Here, the impact of a whole‐cell vaccine comprised of heat‐inactivated S. aureus was investigated in patients with RT. The vaccine was well tolerated and had no significant local or systemic reactions. Immunization with heat‐inactivated S. aureus elicited a significant antibody response characterized by production of IgG1 and IgG2 antibodies and, to a lesser extent, of IgA antibodies. Notably, this response was associated with an important decrease in the incidence of tonsillitis and bacterial colonization of the oropharyngeal mucosa. Our results show that whole‐cell inactivated S. aureus is safe and capable of evoking specific antibody responses in patients with recurrent tonsillitis.  相似文献   
5.
Although substantial economic barriers exist, marine diatoms such as Thalassiosira pseudonana and Phaeodactylum tricornutum hold promise as feedstock for biodiesel because of their ability to manufacture and store triacylglycerols (TAGs). The recent sequencing of these two marine diatom genomes by the United States Department of Energy Joint Genome Institute and the development of improved systems for genetic manipulation should allow a more systematic approach to understanding and maximizing TAG production. However, in order to best utilize these genomes and genetic tools, we must first gain a deeper understanding of the nutrient-mediated regulation of TAG anabolism. By determining both the yield and molecular species distribution of TAGs we will, in the future, be able to fully characterize the effects of genetic manipulation. Here, we lay the groundwork for understanding TAG production in T. pseudonana and P. tricornutum, as a function of nitrate and silicate depletion. Diatoms were starved of either nitrate or silicate, and TAGs were extracted with hexane from lyophilized samples taken at various time intervals following starvation. The timing of TAG production and the relative abundance of TAGs were estimated by fluorescence spectroscopy using Nile red and the total yield per biomass determined by gravimetric assay. TAGs were analyzed using thin layer chromatography, gas chromatography–mass spectrometry, and electrospray ionization mass spectrometry to identify the major TAG species produced during the growth curve. Under our conditions, the TAG yield from T. pseudonana is about 14–18% of total dry weight. The TAG yield from P. tricornutum is about 14% of total dry weight. Silicate-starved T. pseudonana accumulated an average of 24% more TAGs than those starved for nitrate; however, the chemotypes of the TAGs produced were generally similar regardless of the starvation condition employed.  相似文献   
6.
Fahy GM  Wowk B  Wu J  Phan J  Rasch C  Chang A  Zendejas E 《Cryobiology》2004,48(2):157-178
The cryopreservation of organs became an active area of research in the 1950s as a result of the rediscovery of the cryoprotective properties of glycerol by Polge, Smith, and Parkes in 1949. Over the ensuing four decades of research in this area, the advantages of vitrification, or ice-free cryopreservation, have become apparent. To date, experimental attempts to apply vitrification methods to vascularized whole organs have been confined almost entirely to the rabbit kidney. Using techniques available as of 1997, it was possible to vitrify blood vessels and smaller systems with reasonable success, but not whole organs. Beginning in 1998, a series of novel advances involving the control of cryoprotectant toxicity, nucleation, crystal growth, and chilling injury began to provide the tools needed to achieve success. Based on these new findings, we were first able to show that an 8.4M solution (VMP) designed to prevent chilling injury at -22 degrees C was entirely non-toxic to rabbit kidneys when perfused at -3 degrees C and permitted perfusion-cooling to -22 degrees C with only mild additional damage. We next investigated the ability of the kidney to tolerate a 9.3M solution known as M22, which does not devitrify when warmed from below -150 degrees C at 1 degrees C/min. When M22 was added and removed at -22 degrees C, it was sometimes [corrected] fatal, but when it was perfused for 25min at -22 degrees C and washed out simultaneously with warming, postoperative renal function recovered fully. When kidneys loaded with M22 at -22 degrees C were further cooled to an average intrarenal temperature of about -45 degrees C (about halfway through the putative temperature zone of increasing vulnerability to chilling injury), all kidneys supported life after transplantation and returned creatinine values to baseline, though after a higher transient creatinine peak. However, medullary, papillary, and pelvic biopsies taken from kidneys perfused with M22 for 25min at -22 degrees C were found to devitrify when vitrified and rewarmed at 20 degrees C/min in a differential scanning calorimeter. It remains to be determined whether this devitrification is seriously damaging and whether it can be suppressed by improving cryoprotectant distribution to more weakly perfused regions of the kidney or by rewarming at higher rates. In conclusion, although the goal of organ vitrification remains elusive, the prospects for success have never been more promising.  相似文献   
7.

G protein-coupled receptor kinases (GRKs), in addition to their role in modulating signal transduction mechanisms associated with activated G protein-coupled receptors (GPCRs), can also interact with many non-GPCR proteins to mediate cellular responses to chemotherapeutics. The rationale for this study is based on the presumption that GRK2 modulates the responses of cancer cells to the chemotherapeutic cisplatin. In this report, we show that GRK2 modulates the responses of cancer cells to cisplatin. Cervical cancer HeLa cells stably transfected with GRK2 shRNA, to decrease GRK2 protein expression, show increased sensitivity to cisplatin. Of interest, these cells also show increased accumulation of NADPH, associating with decreased NADP buildup, at low concentrations of cisplatin tested. These changes in NADPH and NADP levels are also observed in the breast cancer MDA MB 231 cells, which has lower endogenous GRK2 protein expression levels, but not BT549, a breast cancer cell line with higher GRK2 protein expression. This effect of NADPH accumulation may be associated with a decrease in NADPH oxidase 4 (NOX4) protein expression, which is found to correlate with GRK2 protein expression in cancer cells—a relationship which mimics that observed in cardiomyocytes. Furthermore, like in cardiomyocytes, GRK2 and NOX4 interact to form complexes in cancer cells. Collectively, these results suggest that GRK2 interacts with NOX4 to modify cisplatin sensitivity in cancer cells and may also factor into the success of cisplatin-based regimens.

  相似文献   
8.
Ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality after liver surgery. The role of Sirtuin 1 (SIRT1) in hepatic I/R injury remains elusive. Using human and mouse livers, we investigated the effects of I/R on hepatocellular SIRT1. SIRT1 expression was significantly decreased after I/R. Genetic overexpression or pharmacological activation of SIRT1 markedly suppressed defective autophagy, onset of the mitochondrial permeability transition, and hepatocyte death after I/R, whereas SIRT1-null hepatocytes exhibited increased sensitivity to I/R injury. Biochemical approaches revealed that SIRT1 interacts with mitofusin-2 (MFN2). Furthermore, MFN2, but not MFN1, was deacetylated by SIRT1. Moreover, SIRT1 overexpression substantially increased autophagy in wild-type cells, but not in MFN2-deficient cells. Thus, our results demonstrate that the loss of SIRT1 causes a sequential chain of defective autophagy, mitochondrial dysfunction, and hepatocyte death after I/R.During hepatic resection and liver transplantation operations, inflow occlusion is employed to temporarily limit blood flow to minimize intraoperative blood loss. Although prolonged ischemia eventually causes tissue injury, severe damage paradoxically does not occur until recovery of blood flow and restitutions of normal physiological pH.1 Ischemia/reperfusion (I/R) injury is a key cause of postoperative liver failure during hemorrhagic shock, hepatectomy, and liver transplantation. Despite continuous efforts, substantial benefits from current strategies have not been realized, mainly because of the multifactorial nature of I/R injury.I/R initiates opening of high-conductance permeability transition pores in the mitochondrial inner membranes, leading to mitochondrial permeability transition (MPT).2 Onset of the MPT uncouples oxidative phosphorylation and depolarizes mitochondrial membrane potential (ΔΨm) that in turn causes ATP depletion and cell death.Autophagy is an evolutionarily conserved catabolic process. Among the three forms of autophagy, macroautophagy is of particular importance in the liver, as it not only degrades unneeded intracellular proteins but also digests injured or dysfunctional organelles such as abnormal mitochondria.3 We have shown that impaired autophagy contributes to liver I/R injury.4, 5, 6Sirtuin1 (SIRT1) deacetylates Lys residues of both histone and nonhistone targets, and is activated in response to fasting and calorie restriction in the liver, a condition inducing autophagy.7, 8 Despite its extramitochondrial localization, SIRT1 appears to affect mitochondrial biogenesis9 and bioenergetics,10 but its mechanisms remain elusive.Using isolated hepatocytes, mouse livers, SIRT1-null mice, and human livers, we here demonstrate that I/R depletes livers of SIRT1 and that specific overexpression of SIRT1 mitigates defective autophagy, onset of the MPT, and subsequent hepatocyte death after both in vitro and in vivo I/R. Furthermore, we show that mitofusin-2 (MFN2) is a new substrate for SIRT1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号