首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2007年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1988年   1篇
  1987年   1篇
  1969年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
Multiplex methylation-sensitive PCR and methylation-specific PCR were employed in studying the methylation of CpG islands in the p16/CDKN2A and p14/ARF promoter and the first exon regions in non-small cell lung cancer (54 samples) and acute B-cell lymphoblastic leukemia (61 samples). Differences in methylation were detected between types of neoplasia as well as between CpG islands studied within the same types of tumors. High level of the p16/CDKN2A first exon CpC island methylation was revealed in non-small cell lung cancer (68%) and in acute B-cell lymphoblastic leukemia (55%) and the CpG island of p14/ARF first exon was nonmethylated in these types of tumors. The methylation of CpG-rich fragments of genes p16/CDKN2A and p14/ARF promoters was analysed. As was found out, CpG islands located in 5' areas of one and the same gene can differ in methylation frequencies. The comparison of sensitivity between methylation-specific PCR and methylation-sensitive PCR used in the methylations studies was carried out.  相似文献   
3.
Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus spp. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. AFLR-Protein three-dimensional model was generated using Robetta server. The modeled AFLR-Protein was further optimization and validation using Rampage. In the simulations, we monitored the backbone atoms and the C-α-helix of the modeled protein. The low RMSD and the simulation time indicate that, as expected, the 3D structural model of AFLR-protein represents a stable folding conformation. This study paves the way for generating computer molecular models for proteins whose crystal structures are not available and which would aid in detailed molecular mechanism of inhibition of aflatoxin.  相似文献   
4.
We have developed a modification of methylation sensitive arbitrarily primed PCR, one of the methods of differentially methylated CpG islands in cancer cells genomes screening. Seven genes undergoing abnormal epigenetic regulation in breast cancer, SEMA6B, BIN1, VCPIP1, LAMC3, KCNH2, CACNG4 and PSMF1, have been identified by this method. Methylation and loss of expression frequencies were evaluated for each of the identified genes on 100 paired (cancer/morphologically intact control) breast tissue samples. Significant frequencies of abnormal methylation were detected for SEMA6B, BIN1, and LAMC3 (38%, 18%, and 8% correspondingly). Methylation of the above genes was not characteristic for morphologically intact breast tissues. Downregulation of SEMA6B, BIN1, VCPIP1, LAMC3, KCNH2, CACNG4 and PSMF1 in breast cancer was as frequent as 44-94% by real-time PCR expression assay. The most pronounced functional alterations were demonstrated for SEMA6B and LAMC3 genes, which allows recommending their inclusion into the panels of carcinogenesis diagnostic panels. Fine methylation mapping was performed for the genes most frequently methylated in breast cancer (SEMA6B, BIN1, LAMC3), providing a fundamental basis for the development of effective methylation tests for these genes.  相似文献   
5.
Visualization of molecular structures aids in the understanding of structural and functional roles of biological macromolecules. Macromolecular transport between the cell nucleus and cytoplasm is facilitated by the nuclear pore complex (NPC). The ring structure of the NPC is large and contains several distinct proteins (nucleoporins) which function as a selective gate for the passage of certain molecules into and out of the nucleus. In this note we demonstrate the utility of a python code that allows direct mapping of the physiochemical properties of the constituent nucleoporins on the scaffold of the yeast NPC׳s cytoplasmic view. We expect this tool to be useful for researchers to visualize the NPC based on their physiochemical properties and how it alters when specific mutations are introduced in one or more of the nucleoporins. The code developed using Python is available freely from the authors.  相似文献   
6.
7.
Multiplex methylation-sensitive PCR was employed in studying the methylation of the RB1 and CDKN2A/p16 promoter regions in 52 retinoblastomas. Aberrant methylation inactivating RB1 was detected in 14 (27%) tumors. Methylation of p16 was for the first time observed in retinoblastoma (9 tumors, 17%). Both promoters proved to be methylated in two tumors. In four tumors, aberrant methylation was combined with structural defects of both RB1 alleles. Aberrant methylation of the p16 promoter was the second mutation event in two tumors and was not accompanied by RB1 defects in one tumor. Complex testing for RB1 mutations, loss of heterozygosity, and functional inactivation of the two genes revealed a molecular defect in at least one allele in 51 (98%) tumors.  相似文献   
8.
A PCR-based survey of allelic polymorphism of three microsatellite markers, DXS998, DXS548, and FRAXAC1, mapped to chromosome region Xp27.3, and two microsatellite markers, DXS8091 and DXS1691 located on Xq28 was carried out using a series of DNA samples obtained from 98 unrelated individuals from Russia. The number of alleles detected on electrophregrams for each marker tested was 4, 6, 4, 5, and 3, respectively. The values of heterozygosity index for the markers examined were 0.65, 0.27, 0.38, 0.70, and 0.29, respectively. The observed distribution of the allelic frequencies for each microsatellite marker examined fitted Hardy--Weinberg expectations. The values of individualization potential determined for each marker were 0.24, 0.53, 0.43, 0.12, and 0.52, respectively. In the sample tested the genotype distribution with regard to above loci was determined. The perspectives of using the analyzed allelic polymorphisms for indirect DNA diagnostics of the monogenic diseases located in this chromosome region (X-linked mental retardations, FRAXA and FRAXE) as well as for human population genetics and personal identification is discussed.  相似文献   
9.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RB1, p16/CDKN2A, p15/CDKN2B, p14/ARF, CDH1, HIC1, and N33 5' regions in non-small cell lung cancer (51 tumors). Methylation was observed for the two suppressor genes involved in controlling the cell cycle through the Cdk-Rb-E2F signaling pathway, RB1 (10/51, 19%) and p16 (20/51, 39%). The highest methylation frequencies were established for CDH1 (72%) and HIC1 (82%). The CpG islands of p14 and p15 proved to be nonmethylated. At least one gene was methylated in 90% (46/51) tumors and no gene, in 10% (5/51) tumors. In addition, the genes were tested for methylation in peripheral blood lymphocytes of healthy subjects. Methylation frequency significantly differed between tumors and normal cells in the case of RB1, p16, CDH1, HIC1, and N33. Gene methylation frequency was tested for association with histological type of the tumor and stage of tumor progression. Methylation index of a panel of tumor suppressor genes was established for groups of tumors varying in clinical and morphological parameters.  相似文献   
10.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RB1, p16/CDKN2A, p15/CDKN2B, p14/ARF, CDH1, MGMT, HIC1, and N33 promoter regions in breast carcinoma (105 tumors). Methylation was often observed for the two major suppressor genes involved in cell-cycle control through the Cdk-Rb-E2F signaling pathway, RB1 (18/105, 17%) and p16 (59/105, 56%); both genes were methylated in 13 tumors. Methylation involved p15 in two (2%) tumors; CDH1, in 83 (79%) tumors; MGMT, in eight (8%) tumors, and N33, in nine (9%) tumors. The p14 promoter was not methylated in the tumors examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号