首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   14篇
  230篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   11篇
  2014年   7篇
  2013年   9篇
  2012年   20篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   11篇
  2007年   15篇
  2006年   15篇
  2005年   10篇
  2004年   18篇
  2003年   12篇
  2002年   11篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1991年   2篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
1.
Aberrant expression of MEG3 has been shown in various cancers. The purpose of this study is to evaluate the effect of MEG3 on glioma cells and the use of potential chemotherapeutics in glioma by modulating MEG3 expression. Cell viability, migration and chemosensitivity were assayed. Cell death was evaluated in MEG3 overexpressing and MEG3 suppressed cells. MEG3 expression was compared in patient-derived glioma cells concerning IDH1 mutation and WHO grades. Silencing of MEG3 inhibited cell proliferation and reduced cell migration while overexpression of MEG3 promoted proliferation in glioma cells. MEG3 inhibition improved the chemosensitivity of glioma cells to 5-fluorouracil (5FU) but not to navitoclax. On the other hand, there is no significant effect of MEG3 expression on temozolamide (TMZ) treatment which is a standard chemotherapeutic agent in glioma. Suppression of the MEG3 gene in patient-derived oligodendroglioma cells also showed the same effect whereas glioblastoma cell proliferation and chemosensitivity were not affected by MEG3 inhibition. Further, as a possible cell death mechanism of action apoptosis was investigated. Although MEG3 is a widely known tumour suppressor gene and its loss is associated with several cancer types, here we reported that MEG3 inhibition can be used for improving the efficiency of known chemotherapeutic drug sensitivity. We propose that the level of MEG3 should be evaluated in the treatment of different glioma subtypes that are resistant to effective drugs to increase the potential effective drug applications.  相似文献   
2.
Stable coronary artery disease (CAD) can cause repetitive reversible myocardial ischaemia, and it seems to be possible that reversibly injured myocardium releases small amounts of soluble cytoplasmic proteins. Hence, the aim was to evaluate the effect of stable CAD on baseline serum levels of cardiac biomarkers. We studied 68 consecutive outpatients referred for gated myocardial perfusion imaging. Before a treadmill exercise test, blood samples for measurement of creatine kinase (CK), CK-myocardial band (CK-MB) mass, myoglobin, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were collected. Normal perfusion patterns were detected in 29 (43%) patients (group 1) and perfusion defects were detected in 39 (57%) patients (group 2). Baseline serum levels of biomarkers except CK were significantly higher in group 2 (p=0.001). Stable CAD increases baseline levels of CK-MB mass, myoglobin, AST and LDH in the serum and this increase is related to the extent and severity of the perfusion defect and to some extent the ejection fraction of the left ventricle.  相似文献   
3.
4.
Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.  相似文献   
5.
6.
7.
8.
Molecular Biology Reports - Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in young adults and children in the industrialized countries; however, there are presently...  相似文献   
9.
Paraoxonase‐1 (PON1) is an organophosphate hydrolyzer and antiatherogenic enzyme. Due to the PON1's crucial functions, inhibitors and activators of PON1 must be known for pharmacological applications. In this study, we investigated the in vitro effects of some sulfonamides compounds on human serum PON1 (hPON1). For this aim, we purified the hPON1 from human serum with high specific activity by using simple chromatographic methods, and after the purification processes, we investigated in vitro interactions between the enzyme and some sulfonamides (2‐amino‐5‐methyl‐1,3‐benzenedisulfonamide, 2‐chloro‐4‐sülfamoilaniline, 4‐amino‐3‐methylbenzenesulfanilamide, sulfisoxazole, sulfisomidine, and 5‐amino‐2‐methylbenzenesulfonamide). IC50, Ki values, and inhibition types were calculated for each sulfonamide. 2‐amino‐5‐methyl‐1,3‐benzenedisulfonamide and 2‐chloro‐4‐sülfamoilaniline exhibited noncompetitive inhibition effect, whereas 4‐amino‐3‐methylbenzenesulfanilamide, sulfisoxazole, and sulfisomidine exhibited mixed type inhibition. On the other hand, 5‐amino‐2‐methylbenzenesulfonamide showed competitive inhibition and so molecular docking studies were performed for this compound in order to assess the probable binding mechanism into the active site of hPON1.  相似文献   
10.
The objective of this study was to evaluate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE; active compound in propolis), and pollen on biochemical oxidative stress biomarkers in rat kidney tissue inhibited by Nω‐nitro‐L‐arginine methyl ester (L‐NAME). The biomarkers evaluated were paraoxonase (PON1), oxidative stress index (OSI), total antioxidant status (TAS), total oxidant status (TOS), asymmetric dimethylarginine (ADMA), and nuclear factor kappa B (NF‐κB). TAS levels and PON1 activity were significantly decreased in kidney tissue samples in the L‐NAME‐treated group (P < 0.05). The levels of TAS and PONI were higher in the L‐NAME plus propolis, CAPE, and pollen groups compared with the L‐NAME‐treated group. TOS, ADMA, and NF‐κB levels were significantly increased in the kidney tissue samples of the L‐NAME‐treated group (P < 0.05). However, these parameters were significantly lower in the L‐NAME plus propolis, CAPE, and pollen groups (P < 0.05) compared with rats administered L‐NAME alone (P < 0.05). Furthermore, the binding energy of CAPE within catalytic domain of glutathione reductase (GR) enzyme as well as its inhibitory mechanism was determined using molecular modeling approaches. In conclusion, experimental and theoretical data suggested that oxidative alterations occurring in the kidney tissue of chronic hypertensive rats may be prevented via active compound of propolis, CAPE administration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号