首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2007年   1篇
  2001年   2篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1981年   1篇
  1979年   4篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Effects of signals proceeding along descending pathways on parameters of scratch generator activity were investigated in decerebrate immobilized cats. Certain phase-linked alterations in these parameters were shown to occur under the effects of electrical activation of the main descending systems. The biggest increase in scratch cycle duration under electrical stimulation of Deiter's nucleus, the red nucleus, and pyramidal tract is produced when stimuli are applied during the first half of the aiming stage. Stimulation during the second half of the aiming phase and at the start of the scratching movement hardly affect the scratching cycle. The main increase in length of scratch cycle during electrical stimulation of the reticular gigantocellularis nucleus is noted when stimuli are presented during the second half of the aiming stage. Electrical activation of descending pathways during the latter induces a rise in intensity in this phase and reduced intensity of the actual scratching stage. Activation of the pathways during this scratching motion causes heightened intensity of the motion while hardly affecting intensity of the aiming phase. The principles of suprasegmental rectification of scratch generator operation are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 300–309, May–June, 1990.  相似文献   
2.
Activity of lumbosacral spinal interneurons was studied during fictitious scratching in decerebrate, immobilized cats. Neurons whose activity changed during fictitious scratching were located in the substantia intermedia lateralis and ventral horn. Among these neurons cells were distinguished whose activity was modulated in rhythm with motor discharges to different muscles (61.6%) and cells which were activated tonically (21.4%) or inhibited tonically (17%). By correlation of activity with discharges to corresponding muscles the rhythmically activated neurons were divided into "aiming" (36.6%) and "scratching" (25%). Neurons whose activity was unchanged during fictitious scratching also were observed. These cells were located mainly in the more dorsal regions of gray matter. Neurons to which wide convergence of excitatory influences from high-threshold cutaneous and muscular afferents was observed were mainly placed in the "aiming" group. "Scratching" neurons, compared with "aiming," more often received inputs only from low-threshold cutaneous or high-threshold muscular afferents. Group Ia interneurons were activated in phase with the corresponding motoneurons. Passive displacement of the limb in a forward direction predominantly inhibited spike activity of the "aiming" and potentiated activity of the "scratching" neurons. The neuronal organization of the spinal scratch generator is discussed on the basis of the results.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 57–66, January–February, 1981.  相似文献   
3.
Using the bovine S1-casein gene, a genetic construct with an endostatin-coding fragment of the mouse collagen XVIII cDNA was designed to express endostatin in milk of transgenic animals. Several transgenic mice were obtained. The mice secreted endostatin in milk at 70–300 ng/l and transmitted this character to their progeny.  相似文献   
4.
Studies on immobilized decerebrate (at intracollicular level) cats in which the scratch generator had been set up following bicuculline application to the upper cervical segments of the spinal cord, showed that the state of the segmental apparatus of the lumbosacral section of the spinal cord differs substantially from that seen in the spinal animal. Direct excitability of motoneurons of the "aiming" and "scratching" muscles rises, while recurrent and reciprocal Ia inhibition of motoneurons intensifies and the influence of Ib afferents on motoneurons declines. Afferents of the flexor reflex exert a primarily inhibitory influence on motoneurons of the "aiming" muscles. This influence becomes predominantly excitatory following spinalization, while the inhibitory effects of these afferents on motoneurons of the "scratch" muscles declines. The functional significance of the changes discovered in generation of scratch routine is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 244–250, March–April, 1987.  相似文献   
5.
Research was performed on spinal cats injected with DOPA and decorticate (decerebrated at level A 13) and spinal cats. It was found that formation (activation) of the spinal locomotor generator is accompanied by heightened excitability in the extensor and the reverse trend in the flexor motoneurons, by an increase in the efficacy of recurrent and reciprocal Ia inhibition of -motoneurons, and by a weakening of the influence of Ib afferents and extensor reflex afferents on these same motoneurons. The likely functional role of these changes in tuning of the spinal segmental apparatus in the generation of locomotor rhythm is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 679–687, September–October, 1986.  相似文献   
6.
Effects of stimulation of flexor reflex afferents were studied in decerebrate immobilized cats. Stimulation of ipsilateral afferents evoked late long-lasting discharges in the nerves to the flexors, whereas stimulation of contralateral afferents led to similar discharges in nerves to both extensors and flexors. Compared with spinal animals, early segmental reflexes in thalamic cats were tonically depressed. Similar tonic inhibition of segmental reflexes took place in spinal animals after injection of dopa. Segmental reflexes were clearly modulated during late or rhythmic discharges. The possible central mechanisms of these changes in the segmental reflexes are discussed on the basis of data in the literature.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 137–145, March–April, 1979.  相似文献   
7.
Activity of lumbar spinal neurons was recorded extracellularly during late long-lasting discharges in efferent nerves in immobilized thalamic cats. Of the total number of cells tested, 70% changed their activity during late discharges. The activity of 35% of neurons was increased during late discharges in nerves to flexors, but inhibited during discharges in nerves to extensors. Responses of 27% of neurons were of the opposite character. Other neurons were found whose activity was increased (5%) and reduced (3%), respectively, during later discharges in both flexor and extensor nerves. Most interneurons which changed their activity during late discharges were located in lateral parts of the intermediate zone of gray matter and the ventral horn at a depth of 2.8 mm. The character of the afferent input to a neuron was found to depend on the late efferent discharges and activity of the neurons correlated with them. Neurons whose activity was unchanged during late discharges (30%) were mainly located rather more dorsally, at a depth of about 2.0 mm. The possible mechanisms of the participation of these groups of interneurons in the generation of late discharges are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 236–244, May–June, 1979.  相似文献   
8.
It was found during experiments on immobilized decerebrate (at intracollicular level) cats that tonic sub-threshold activation of the spinal generator of scratching action (following application of tubocurarine or bicuculline to segments C1-C2) was accompanied by depolarization of primary afferent terminals, a reduction in the N1 component of dorsal surface potential produced by stimulating the cutaneous afferents, and a reduction in the amplitude of dorsal root potentials and lead-phase polysynaptic response produced in motoneurons by stimulating the cutaneous and muscle afferents. A rise or a reduction in the activity of interneurons belonging to the interstitial nucleus connected respectively mono- and di-(oligo)synaptically with the afferents occurred in parallel with this. Spinalization produced the same changes in reverse in the animal. By administering DOPA to the spinal animal, a comparison could be made of changes occurring in the state of the segmental apparatus of the lumbar section of the spinal cord during tonic sub-threshold activation of spinal scratch generators and locomotor movements.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 236–243, March–April, 1987.  相似文献   
9.
The effects of signals travelling through vestibulo-, rubro-, reticulo-, and corticospinal systems on the parameters of locomotor generator activity were investigated in decerebrate immobilized cats. Certain phase-linked alterations in these parameters were found to occur under the effects of electrical stimulation applied to these systems (brief trains of stimuli). The biggest increase in locomotor cycle length was produced by electrical stimulation of Deiter's nucleus — stimulus presentation at the end of the extension phase; stimulation at the flexor stage leads to a shortening of this cycle. Maximum increase in locomotor cycle length produced by electrical stimulation of the red nucleus and nucleus gigantocellaris reticularis together with the pyramidal tract takes place during the first half of the flexion phase. Electrical activation of these descending pathways during the flexion phase induces intensification of this phase and reduced intensity of the extension phase. Activation of the vestibulospinal tract produces increased and reduced intensification of the extension phase respectively. Principles of suprasegmental correction of locomotor and scratch generators are compared.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 151–160, March–April, 1991.  相似文献   
10.
Using unanesthetized and decorticated (or decerebrated at level A 13) cats, it was found that spinalization leads to depolarization of the central terminals of primary afferents and an increase in the N1 component of dorsal surface potential and dorsal root potential (DRP) produced by stimulating the low-threshold cutaneous and muscle afferents. Other effects include an increase in early polysynaptic responses and DRP produced by stimulation of high-threshold muscle afferents, a reduction in the intensity of interneuron activation in the nucleus interpositus mono- and polysynaptically connected with primary afferents, and a rise in the activity of n. interpositus interneurons di- and oligo-synaptically connected with afferent terminals. Changes in the opposite direction were produced by injecting DOPA into spinal animals. The connection between changes in the state of the segmental neuronal apparatus of the lumbosacral spinal cord and the level of spinal locomotor generator activity is discussed in the light of the findings obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 669–678, September–October, 1986.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号