首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Infection of the soybean root by the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) induces a well-documented, yet poorly understood, response by the host plant. The plant response, involving the differentiation of a feeding structure, or "syncytium," facilitates the feeding and reproduction of the nematode to the detriment of the host. We used a genetic system involving a single dominant soybean gene conferring susceptibility to an inbred nematode strain, VL1, to characterize the nematode-host interaction in susceptible line PI 89008. The restriction fragment length polymorphism marker pB053, shown to map to a major SCN resistance locus, cosegregates with resistance among F2 progeny from the PI 89008 x PI 88287 cross. Cytological examination of the infection process confirmed that syncytium development in this genetic system is similar to that reported by others who used noninbred nematode lines. Our study of infected root tissue in the susceptible line PI 89008 revealed a number of genes enhanced in expression. Among these are catalase, cyclin, elongation factor 1alpha, beta-1,3-endoglucanase, hydroxy-methylglutaryl coenzyme A reductase, heat shock protein 70, late embryonic abundant protein 14, and formylglycinamidine ribonucleotide synthase, all of which we have genetically positioned on the public linkage map of soybean. Formylglycinamidine ribonucleotide synthase was found to be tightly linked with a major quantitative trait locus for SCN resistance. Our observations are consistent with the hypothesis proposed by others that feeding site development involves the dramatic modulation of gene expression relative to surrounding root cells.  相似文献   
2.
3.
4.
The non-homologous DNA end joining (NHEJ) pathway is a major double-strand DNA break repair pathway in cells of multicellular eukaryotes. Ku is a heterodimeric protein consisting of Ku70 and Ku86, and it is thought to be the first component to bind to a broken double-strand DNA end. Mice lacking Ku86 show features of premature aging, live about 6-12 months, and show a characteristic loss of neurons in the central nervous system during development. Cells from mice lacking Ku have increased numbers of chromosome breaks, a significant fraction of which are caused by oxidative metabolism. Overexpression of the cytoplasmic Cu/Zn superoxide dismutase (SOD1) from a transgene is known to increase the number of chromosome breaks in primary cells (presumably by increasing reactive oxygen species). Here we show that SOD1 overexpression in a Ku86-/- mouse results in embryonic lethality. This striking effect is, however, subject to a strain-specific modifier. Genome-wide marker analysis is most consistent with the modifier being on mouse chromosome 13. Analysis of 10 markers on chromosome 13 suggests that the modifier is within the same region as a modifier of the murine amyotropic lateral sclerosis (ALS) phenotype when it is caused by overexpression of a mutant form of SOD1. Based on these results, we propose a model in which oxidative metabolism causes chromosome breaks, leading to neuronal death; and this neuronal death may account for that seen in NHEJ mutant animals and in mammals with SOD1-mediated ALS.  相似文献   
5.
Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)–mediated double-strand DNA break (DSB) repair. Here, we report a negative role of X-RAY CROSS COMPLEMENTATION GROUP4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate.  相似文献   
6.
Aphis fabae Scopoli (Hemiptera: Aphididae) is heteroecious and polyphagous that is harmful on secondary hosts such as many important agricultural products like beet, common bean, faba bean, potato and other products. This aphid is the cause of more than 33 viral transition. One of the mechanisms of plant resistance is antixenosis. This mechanism influences on placement and nutrition of pests that result in less damage. In this study, antixenosis resistance mechanism of 12 varieties of bean was tested. Experiment was on completely randomised design with 12 treatments and 6 replications. Bean varieties include of white bean, kidney bean and wax bean, and each replication includes one pot, and then, pots were placed under the isolated room that were filled with winged adult aphids in circular form. After 24 and 48?h, aphids and level of nymph production were counted. The lowest number of adult aphids was observed on Sayad variety among 12 varieties (during 24?h). The least number of produced nymphs was in Daneshkade variety. In Sayad variety, the frequency of matured insects and produced nymphs was minimum.  相似文献   
7.

Background

Significant adverse events (AE) have been reported in patients receiving medications for multidrug- and extensively-drug-resistant tuberculosis (MDR-TB & XDR-TB). However, there is little prospective data on AE in MDR- or XDR-TB/HIV co-infected patients on antituberculosis and antiretroviral therapy (ART) in programmatic settings.

Methods

Médecins Sans Frontières (MSF) is supporting a community-based treatment program for drug-resistant tuberculosis in HIV-infected patients in a slum setting in Mumbai, India since 2007. Patients are being treated for both diseases and the management of AE is done on an outpatient basis whenever possible. Prospective data were analysed to determine the occurrence and nature of AE.

Results

Between May 2007 and September 2011, 67 HIV/MDR-TB co-infected patients were being treated with anti-TB treatment and ART; 43.3% were female, median age was 35.5 years (Interquartile Range: 30.5–42) and the median duration of anti-TB treatment was 10 months (range 0.5–30). Overall, AE were common in this cohort: 71%, 63% and 40% of patients experienced one or more mild, moderate or severe AE, respectively. However, they were rarely life-threatening or debilitating. AE occurring most frequently included gastrointestinal symptoms (45% of patients), peripheral neuropathy (38%), hypothyroidism (32%), psychiatric symptoms (29%) and hypokalaemia (23%). Eleven patients were hospitalized for AE and one or more suspect drugs had to be permanently discontinued in 27 (40%). No AE led to indefinite suspension of an entire MDR-TB or ART regimen.

Conclusions

AE occurred frequently in this Mumbai HIV/MDR-TB cohort but not more frequently than in non-HIV patients on similar anti-TB treatment. Most AE can be successfully managed on an outpatient basis through a community-based treatment program, even in a resource-limited setting. Concerns about severe AE in the management of co-infected patients are justified, however, they should not cause delays in the urgently needed rapid scale-up of antiretroviral therapy and second-line anti-TB treatment.  相似文献   
8.
There are two general pathways by which multicellular eukaryotes repair double-strand DNA breaks (DSB): homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). All mammalian mutants in the NHEJ pathway demonstrate a lack of B and T lymphocytes and ionizing radiation sensitivity. Among these NHEJ mutants, the DNA-PK(cs) and Artemis mutants are the least severe, having no obvious phenotype other than the general defects described above. Ku mutants have an intermediate severity with accelerated senescence. The XRCC4 and DNA ligase IV mutants are the most severe, resulting in embryonic lethality. Here we show that the lethality of DNA ligase IV-deficiency in the mouse can be rescued when Ku86 is also absent. To explain the fact that simultaneous gene mutations in the NHEJ pathway can lead to viability when a single mutant is not viable, we propose a nuclease/ligase model. In this model, disrupted NHEJ is more severe if the Artemis:DNA-PK(cs) nuclease is present in the absence of a ligase, and Ku mutants are of intermediate severity, because the nuclease is less efficient. This model is also consistent with the order of severity in organismal phenotypes; consistent with chromosomal breakage observations reported here; and consistent with the NHEJ mutation identified in radiation sensitive human SCID patients.  相似文献   
9.
Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.  相似文献   
10.

Background

Unsuccessful treatment outcomes among patients with multi-/extensively- drug resistant tuberculosis (TB) have hampered efforts involved in eradicating this disease. In order to better understand the etiology of this disease, we aimed to determine whether single or multiple strains of Mycobacterium tuberculosis (MTB) are localized within lung cavities of patients suffering from chronic progressive TB.

Methodology/Findings

Multiple cavity isolates from lung of 5 patients who had undergone pulmonary resection surgery were analyzed on the basis of their drug susceptibility profile, and genotyped by spoligotyping and 24-loci MIRU-VNTR. The patients past history including treatment was studied. Three of the 5 patients had extensive drug resistant TB. Heteroresistance was also reported within different cavity isolates of the lung. Both genotyping methods reported the presence of clonal population of MTB strain within different cavities of the each patient, even those reporting heteroresistance. Four of the 5 patients were infected with a population of the Beijing genotype. Post-surgery they were prescribed a drug regimen consisting of cycloserine, a fluoroquinolone and an injectable drug. A 6 month post-surgery follow-up reported only 2 patients with positive clinical outcome, showing sputum conversion.

Conclusion

Identical spoligotype patterns and MIRU-VNTR profiles between multiple cavities of each patient, characterize the presence of clonal population of MTB strains (and absence of multiple MTB infection).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号