首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   6篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2016年   4篇
  2015年   12篇
  2014年   7篇
  2013年   5篇
  2012年   11篇
  2011年   6篇
  2010年   3篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
  1990年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有103条查询结果,搜索用时 171 毫秒
1.
Journal of Plant Growth Regulation - The wide use of copper (Cu)-based fungicide has caused a stepwise accumulation of Cu in the environment increasing the occurrence of phytotoxicity in crops. To...  相似文献   
2.
We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here, we use carbon fibre amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells over‐expressing RCAN1 (RCAN1ox), but not in wild‐type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK‐506, replicates this effect in WT cells but has no additional effect in RCAN1ox cells. When we chronically expose WT cells to cyclosporine A and FK‐506 we find that catecholamine release per vesicle and pre‐spike foot (PSF) signal parameters are decreased, similar to that in RCAN1ox cells. Inhibiting calcineurin activity in RCAN1ox cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Although electron microscopy studies indicate these changes are not because of altered vesicle number or distribution in RCAN1ox cells, the smaller vesicle and dense core size we observe in RCAN1ox cells may underlie the reduced quantal release in these cells. Thus, our results indicate that RCAN1 most likely affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity.  相似文献   
3.
While nitrate acquisition has been extensively studied, less information is available on transport systems of urea. Furthermore, the reciprocal influence of the two sources has not been clarified, so far. In this review, we will discuss recent developments on plant response to urea and nitrate nutrition. Experimental evidence suggests that, when urea and nitrate are available in the external solution, the induction of the uptake systems of each nitrogen (N) source is limited, while plant growth and N utilization is promoted. This physiological behavior might reflect cooperation among acquisition processes, where the activation of different N assimilatory pathways (cytosolic and plastidic pathways), allow a better control on the nutrient uptake. Based on physiological and molecular evidence, plants might increase (N) metabolism promoting a more efficient assimilation of taken-up nitrogen. The beneficial effect of urea and nitrate nutrition might contribute to develop new agronomical approaches to increase the (N) use efficiency in crops.  相似文献   
4.
Plant Molecular Biology - Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for...  相似文献   
5.
Molecular Biology Reports - Small auxin-up RNA (SAUR) genes form a wide family supposedly involved in different physiological and developmental processes in plants such as leaf senescence, auxin...  相似文献   
6.
Apyrase and 5′-nucleotidase activities were analyzed in an ethidium bromide (EB) demyelinating model associated with interferon-β (IFN-β). The animals were divided in groups: I, control (saline); II, saline and IFN-β; III, EB and IV, EB and IFN-β. After 7, 15 and 30 days the animals (n=5) were sacrificed and the cerebral cortex was removed for synaptosome preparation and enzymatic assays. Apyrase activity using ATP as substrate increased in groups II, III and IV (P<0.001) after 7 days and in groups III and IV (P<0.001) after 15 days. Using ADP as substrate, an activation of this enzyme was observed in group III (P<0.05) after seven and 15 days. The 5′-nucleotidase activity increased in group III (P<0.05) after 7 days and in groups II, III and IV (P<0.001) after 15 days. After 30 days treatment, no significant alteration was observed in enzyme activities. Results showed that apyrase and 5′-nucleotidase activities are altered in demyelination events and that IFN-β was able to regulate the adenine nucleotide hydrolysis.  相似文献   
7.
Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.  相似文献   
8.
The PAR proteins have an essential and conserved function in establishing polarity in many cell types and organisms. However, their key upstream regulators remain to be identified. In C. elegans, regulators of the PAR proteins can be identified by their ability to suppress the lethality of par-2 mutant embryos. Here we show that a nos-3 loss of function mutant suppresses the lethality of par-2 mutants by regulating PAR-6 protein levels. The suppression requires the activity of the sex determination genes fem-1/2/3 and of the cullin cul-2. FEM-1 is a substrate-specific adaptor for a CUL-2-based ubiquitin ligase (CBCFEM-1). Interestingly, we find that CUL-2 is required for the regulation of PAR-6 levels and that PAR-6 physically interacts with FEM-1. Our data strongly suggest that PAR-6 levels are regulated by the CBCFEM-1 ubiquitin ligase thereby uncovering a novel role for the FEM proteins and cullin-dependent degradation in regulating PAR proteins and polarity processes.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号