首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   17篇
  194篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   11篇
  2013年   3篇
  2012年   14篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2004年   12篇
  2003年   5篇
  2002年   7篇
  2001年   14篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
1.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   
2.
3.
We have previously reported that the isolated frog corneal epithelium (a Cl-secreting epithelium) has a large diffusional water permeability (Pdw 1.8×10–4 cm/s). We now report that the presence of Cl in the apical-side bathing solution increases the diffusional water flux, Jdw (in both directions) by 63% from 11.3 to 18.4 l min–1 · cm–2 with 60 mm [Cl] exerting the maximum effect. The presence of Cl in the basolateral-side bathing solution had no effect on the water flux. In Cl-free solutions amphotericin B increased Jdw by 29% but only by 3% in Cl-rich apical-side bathing solution, suggesting that in Cl-rich apical side bathing solution, the apical barrier is no longer rate limiting. Apical Br (75 mm) also increased Jdw by 68%. The effect of Cl on Jdw was observed within 1 min after its addition to the apicalside bathing solution. HgCl2 (0.5 mm) reduced the Cl-increased Pdw by 31%. The osmotic permeability (Pf) was also measured under an osmotic gradient yielding values of 0.34 and 2.88 (x 10–3 cm/s) in Cl-free and Cl-rich apical-side bathing solutions respectively. It seems that apical Cl, or Cl secretion into the apical bath could activate normally present but inactive water channels. In the absence of Cl, water permeability of the apical membrane seems to be limited to the permeability of the lipid bilayer.This work was supported by National Eye Institute grants EY-00160 and EY-01867.  相似文献   
4.
Non-typhoidal Salmonella enterica is a common cause of diarrhoeal disease; in humans, consumption of contaminated poultry meat is believed to be a major source. Brazil is the world’s largest exporter of chicken meat globally, and previous studies have indicated the introduction of Salmonella serovars through imported food products from Brazil. Here we provide an in-depth genomic characterisation and evolutionary analysis to investigate the most prevalent serovars and antimicrobial resistance (AMR) in Brazilian chickens and assess the impact to public health of products contaminated with S. enterica imported into the United Kingdom from Brazil. To do so, we examine 183 Salmonella genomes from chickens in Brazil and 357 genomes from humans, domestic poultry and imported Brazilian poultry products isolated in the United Kingdom. S. enterica serovars Heidelberg and Minnesota were the most prevalent serovars in Brazil and in meat products imported from Brazil into the UK. We extended our analysis to include 1,259 publicly available Salmonella Heidelberg and Salmonella Minnesota genomes for context. The Brazil genomes form clades distinct from global isolates, with temporal analysis suggesting emergence of these Salmonella Heidelberg and Salmonella Minnesota clades in the early 2000s, around the time of the 2003 introduction of the Enteritidis vaccine in Brazilian poultry. Analysis showed genomes within the Salmonella Heidelberg and Salmonella Minnesota clades shared resistance to sulphonamides, tetracyclines and beta-lactams conferred by sul2, tetA and blaCMY-2 genes, not widely observed in other co-circulating serovars despite similar selection pressures. The sul2 and tetA genes were concomitantly carried on IncC plasmids, whereas blaCMY-2 was either co-located with the sul2 and tetA genes on IncC plasmids or independently on IncI1 plasmids. Long-term surveillance data collected in the UK showed no increase in the incidence of Salmonella Heidelberg or Salmonella Minnesota in human cases of clinical disease in the UK following the increase of these two serovars in Brazilian poultry. In addition, almost all of the small number of UK-derived genomes which cluster with the Brazilian poultry-derived sequences could either be attributed to human cases with a recent history of foreign travel or were from imported Brazilian food products. These findings indicate that even should Salmonella from imported Brazilian poultry products reach UK consumers, they are very unlikely to be causing disease. No evidence of the Brazilian strains of Salmonella Heidelberg or Salmonella Minnesota were observed in UK domestic chickens. These findings suggest that introduction of the Salmonella Enteritidis vaccine, in addition to increasing antimicrobial use, could have resulted in replacement of salmonellae in Brazilian poultry flocks with serovars that are more drug resistant, but less associated with disease in humans in the UK. The plasmids conferring resistance to beta-lactams, sulphonamides and tetracyclines likely conferred a competitive advantage to the Salmonella Minnesota and Salmonella Heidelberg serovars in this setting of high antimicrobial use, but the apparent lack of transfer to other serovars present in the same setting suggests barriers to horizontal gene transfer that could be exploited in intervention strategies to reduce AMR. The insights obtained reinforce the importance of One Health genomic surveillance.  相似文献   
5.
Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut‐fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine‐scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal‐associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations.  相似文献   
6.
Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.  相似文献   
7.
8.
Aging leads to a progressive functional decline of the immune system, rendering the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this decline remains unclear, however, since markers that label immune cells with classical features of cellular senescence accurately and comprehensively have not been identified. Using a second‐generation fluorogenic substrate for β‐galactosidase and multi‐parameter flow cytometry, we demonstrate here that peripheral blood mononuclear cells (PBMCs) isolated from healthy humans increasingly display cells with high senescence‐associated β‐galactosidase (SA‐βGal) activity with advancing donor age. The greatest age‐associated increases were observed in CD8+ T‐cell populations, in which the fraction of cells with high SA‐βGal activity reached average levels of 64% in donors in their 60s. CD8+ T cells with high SA‐βGal activity, but not those with low SA‐βGal activity, were found to exhibit features of telomere dysfunction‐induced senescence and p16‐mediated senescence, were impaired in their ability to proliferate, developed in various T‐cell differentiation states, and had a gene expression signature consistent with the senescence state previously observed in human fibroblasts. Based on these results, we propose that senescent CD8+ T cells with classical features of cellular senescence accumulate to levels that are significantly higher than previously reported and additionally provide a simple yet robust method for the isolation and characterization of senescent CD8+ T cells with predictive potential for biological age.  相似文献   
9.
Terrestrial breeding is a derived condition in frogs, with multiple transitions from an aquatic ancestor. Shifts in reproductive mode often involve changes in habitat use, and these are typically associated with diversification in body plans, with repeated transitions imposing similar selective pressures. We examine the diversification of reproductive modes, male and female body sizes, and sexual size dimorphism (SSD) in the Neotropical frog genera Cycloramphus and Zachaenus, both endemic to the Atlantic rainforest of Brazil. Species in this clade either breed in rocky streams (saxicolous) or in terrestrial environments, allowing us to investigate reproductive habitat shifts. We constructed a multilocus molecular phylogeny and inferred evolutionary histories of reproductive habitats, body sizes, and SSD. The common ancestor was small, saxicolous, and had low SSD. Terrestrial breeding evolved independently three times and we found a significant association between reproductive habitat and SSD, with shifts to terrestrial breeding evolving in correlation with decreases in male body size, but not female body size. Terrestrial breeding increases the availability of breeding sites and results in concealment of amplexus, egg-laying, and parental care, therefore reducing male-male competition at all stages of reproduction. We conclude that correlated evolution of terrestrial reproduction and small males is due to release from intense male-male competition that is typical of exposed saxicolous breeding.  相似文献   
10.
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号