首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Cellular and Molecular Neurobiology - Pharmacological evaluation of the mu-opioid receptor (MOR) agonist properties of NKTR-181 in rodent models. Graded noxious stimulus intensities were used in...  相似文献   
2.
A novel photonic method for remote monitoring of task‐related hemodynamic changes in human brain activation is presented. Physiological processes associated with neural activity, such as nano‐vibrations due to blood flow and tissue oxygenation in the brain, are detected by remote sensing of nano‐acoustic vibrations using temporal spatial analysis of defocused self‐interference random patterns. Temporal nanometric changes of the speckle pattern due to visual task‐induced hemodynamic responses were tracked by this method. Reversing visual checkerboard stimulation alternated with rest epochs, and responsive signals were identified in occipital lobe using near‐infrared spectroscopy. Temporal vibrations associated with these hemodynamic response functions were observed using three different approaches: (a) single spot illumination at active and control areas simultaneously, (b) subspots cross‐correlation‐based analysis, and (c) multiwavelength measurement using a magnitude‐squared wavelet coherence function. Findings show remote sensing of task‐specific neural activity in the human brain.  相似文献   
3.
Lipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and decreased insulin-stimulated GLUT4 translocation and glucose transport. FFAs activated the stress/inflammatory kinases c-Jun N-terminal kinase (JNK) and IKKbeta, and the suppressor of cytokine signaling protein 3, increased secretion of the inflammatory cytokine tumor necrosis factor (TNF)-alpha, and decreased secretion of adiponectin into the medium. RNA interference-mediated down-regulation of JNK blocked JNK activation and prevented most of the FFA-induced defects in insulin action. Blockade of TNF-alpha signaling with neutralizing antibodies to TNF-alpha or its receptors or with a dominant negative TNF-alpha peptide had a partial effect to inhibit FFA-induced cellular insulin resistance. We found that JNK activation by FFAs was not inhibited by blocking TNF-alpha signaling, whereas the FFA-induced increase in TNF-alpha secretion was inhibited by RNA interference-mediated JNK knockdown. Together, these results indicate that 1) JNK can be activated by FFAs through TNF-alpha-independent mechanisms, 2) activated JNK is a major contributor to FFA-induced cellular insulin resistance, and 3) TNF-alpha is an autocrine/paracrine downstream effector of activated JNK that can also mediate insulin resistance.  相似文献   
4.
ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.  相似文献   
5.
Recently there were several publications on the bactericidal effect of visible light, most of them claiming that blue part of the spectrum (400 nm-500 nm) is responsible for killing various pathogens1-5. The phototoxic effect of blue light was suggested to be a result of light-induced reactive oxygen species (ROS) formation by endogenous bacterial photosensitizers which mostly absorb light in the blue region4,6,7. There are also reports of biocidal effect of red and near infra red8 as well as green light9.In the present study, we developed a method that allowed us to characterize the effect of high power green (wavelength of 532 nm) continuous (CW) and pulsed Q-switched (Q-S) light on Pseudomonas aeruginosa. Using this method we also studied the effect of green light combined with antibiotic treatment (gentamycin) on the bacteria viability. P. aeruginosa is a common noscomial opportunistic pathogen causing various diseases. The strain is fairly resistant to various antibiotics and contains many predicted AcrB/Mex-type RND multidrug efflux systems10.The method utilized free-living stationary phase Gram-negative bacteria (P. aeruginosa strain PAO1), grown in Luria Broth (LB) medium exposed to Q-switched and/or CW lasers with and without the addition of the antibiotic gentamycin. Cell viability was determined at different time points. The obtained results showed that laser treatment alone did not reduce cell viability compared to untreated control and that gentamycin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamycin treatment, however, resulted in a synergistic effect and the viability of P. aeruginosa was reduced by 8 log''s.The proposed method can further be implemented via the development of catheter like device capable of injecting an antibiotic solution into the infected organ while simultaneously illuminating the area with light.  相似文献   
6.
Recently, a requirement for beta-arrestin-mediated endocytosis in the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by several G protein-coupled receptors (GPCRs) has been proposed. However, the importance of this requirement for function of ERK1/2 is unknown. We report that agonists of Galphaq-coupled proteinase-activated receptor 2 (PAR2) stimulate formation of a multiprotein signaling complex, as detected by gel filtration, immunoprecipitation and immunofluorescence. The complex, which contains internalized receptor, beta-arrestin, raf-1, and activated ERK, is required for ERK1/2 activation. However, ERK1/2 activity is retained in the cytosol and neither translocates to the nucleus nor causes proliferation. In contrast, a mutant PAR2 (PAR2deltaST363/6A), which is unable to interact with beta-arrestin and, thus, does not desensitize or internalize, activates ERK1/2 by a distinct pathway, and fails to promote both complex formation and cytosolic retention of the activated ERK1/2. Whereas wild-type PAR2 activates ERK1/2 by a PKC-dependent and probably a ras-independent pathway, PAR2(deltaST363/6A) appears to activate ERK1/2 by a ras-dependent pathway, resulting in increased cell proliferation. Thus, formation of a signaling complex comprising PAR2, beta-arrestin, raf-1, and activated ERK1/2 might ensure appropriate subcellular localization of PAR2-mediated ERK activity, and thereby determine the mitogenic potential of receptor agonists.  相似文献   
7.
8.
In systems biology, study of a complex and multicomponent system, such as morphogenesis, comprises accumulation of data on morphogenetic processes in databases, classification and logical analysis of this information, and computer simulation of the processes in question using the data accumulated and the results of their analysis. This paper describes realization of the first steps in a systems study of morphogenesis (annotating research papers, compiling information in a database, data systematization, and their logical analysis) by the example of Arabidopsis thaliana, a model object in plant molecular biology. The database AGNS (Arabidopsis GeneNet Supplementary; http://wwwmgs.bionet.nsc.ru/agns) contains the experimentally confirmed information from published papers on specific features of gene expression and phenotypes of wild-type, mutant, and transgenic A. thaliana plants. AGNS queries and logical data analysis with the aid of specially developed software makes it possible to model various morphogenetic processes from gene expression to functioning of gene networks and their contribution to the development of certain traits.  相似文献   
9.
A dominant hypomorphic allele of Tnf, PanR1, was identified in a population of G(1) mice born to N-ethyl-N-nitrosourea-mutagenized sires. Macrophages from homozygotes produced no detectable TNF bioactivity, although normal quantities of immunoreactive TNF were secreted. The phenotype was confined to a critical region on mouse chromosome 17, and then ascribed to a C-->A transversion at position 3480 of the Tnf gene, corresponding to the amino acid substitution P138T. As a result of subunit exchange, the protein exerts a dominant-negative effect on normal TNF trimers, interfering with the trimer/receptor interaction. Homozygotes are highly susceptible to infection by Listeria monocytogenes, confirming the essential role of TNF in innate immune defense. However, PanR1 mutant mice show normal architecture of the spleen and Peyer's patches, suggesting that TNF is not essential for the formation of these lymphoid structures.  相似文献   
10.
Engagement of the low-affinity Ab receptor FcγRIIb downregulates B cell activation, and its dysfunction is associated with autoimmunity in mice and humans. We engineered the Fc domain of an anti-human CD19 Ab to bind FcγRIIb with high affinity, promoting the coengagement of FcγRIIb with the BCR complex. This Ab (XmAb5871) stimulated phosphorylation of the ITIM of FcγRIIb and suppressed BCR-induced calcium mobilization, proliferation, and costimulatory molecule expression of human B cells from healthy volunteers and systemic lupus erythematosus (SLE) patients, as well as B cell proliferation induced by LPS, IL-4, or BAFF. XmAb5871 suppressed humoral immunity against tetanus toxoid and reduced serum IgM, IgG, and IgE levels in SCID mice engrafted with SLE or healthy human PBMC. XmAb5871 treatment also increased survival of mice engrafted with PBMC from a unique SLE patient. Unlike anti-CD20 Ab, coengagement of FcγRIIb and BCR complex did not promote B cell depletion in human PBMC cultures or in mice. Thus, amplification of the FcγRIIb inhibitory pathway in activated B cells may represent a novel B cell-targeted immunosuppressive therapeutic approach for SLE and other autoimmune diseases that should avoid the complications associated with B cell depletion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号