首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   3篇
  142篇
  2023年   1篇
  2022年   2篇
  2021年   13篇
  2020年   7篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   11篇
  2013年   8篇
  2012年   11篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   10篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1990年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
2.
Escherichia coli is frequently exploited for genetic manipulations and heterologous gene expression studies. We have evaluated the metabolic profile of E. coli strain BL21 (DE3) RIL CodonPlus after genetic modifications and subjecting to the production of recombinant protein. Three genetically variable E. coli cell types were studied, normal cells (susceptible to antibiotics) cultured in simple LB medium, cells harboring ampicillin-resistant plasmid pET21a (+), grown under antibiotic stress, and cells having recombinant plasmid pET21a (+) ligated with bacterial lactate dehydrogenase gene grown under ampicillin and standard isopropyl thiogalactoside (IPTG)-induced gene expression conditions. A total of 592 metabolites were identified through liquid chromatography-mass spectrometry/mass spectrometry analysis, feature and peak detection using XCMS and CAMERA followed by precursor identification by METLIN-based procedures. Overall, 107 metabolites were found differentially regulated among genetically modified cells. Quantitative analysis has shown a significant modulation in DHNA-CoA, p-aminobenzoic acid, and citrulline levels, indicating an alteration in vitamin K, folic acid biosynthesis, and urea cycle of E. coli cells during heterologous gene expression. Modulations in energy metabolites including NADH, AMP, ADP, ATP, carbohydrate, terpenoids, fatty acid metabolites, diadenosine tetraphosphate (Ap4A), and l -carnitine advocate major metabolic rearrangements. Our study provides a broader insight into the metabolic adaptations of bacterial cells during gene manipulation experiments that can be prolonged to improve the yield of heterologous gene products and concomitant production of valuable biomolecules.  相似文献   
3.

Aims

The ability to suppress soil nitrification through the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI). Here, we aimed at the quantification and characterization of the BNI function in sorghum that includes inhibitor production, their chemical identity, functionality and factors regulating their release.

Methods

Sorghum was grown in solution culture and root exudate was collected using aerated NH4Cl solutions. A bioluminescence assay using recombinant Nitrosomonas europaea was employed to determine the BNI activity. Activity-guided chromatographic fractionation was used to isolate biological nitrification inhibitors (BNIs). The chemical structure was analyzed using NMR and mass spectrometry; pH-stat systems were deployed to analyze the role of rhizosphere pH on BNIs release.

Results

Sorghum roots released two categories of BNIs: hydrophilic- and hydrophobic-BNIs. The release rates for hydrophilic- and hydrophobic- BNIs ranged from 10 to 25 ATU?g?1 root dwt. d?1. Addition of hydrophilic BNIs (10 ATU?g?1 soil) significantly inhibited soil nitrification (40 % inhibition) during a 30-d incubation test. Two BNI compounds isolated are: sakuranetin (ED80 0.6 μM; isolated from hydrophilic-BNIs fraction) and sorgoleone (ED80 13.0 μM; isolated from hydrophobic-BNIs fraction), which inhibited Nitrosomonas by blocking AMO and HAO enzymatic pathways. The BNIs release required the presence of NH 4 + in the root environment and the stimulatory effect of NH 4 + lasted 24 h. Unlike the hydrophobic-BNIs, the release of hydrophilic-BNIs declined at a rhizosphere pH >5.0; nearly 80 % of hydrophilic-BNI release was suppressed at pH ≥7.0. The released hydrophilic-BNIs were functionally stable within a pH range of 5.0 to 9.0. Sakuranetin showed a stronger inhibitory activity (ED50 0.2 μM) than methyl 3-(4-hydroxyphenyl) propionate (MHPP) (ED50 100 μM) (isolated from hydrophilic-BNIs fraction) in the in vitro culture-bioassay, but the activity was non-functional and ineffective in the soil-assay.

Conclusions

There is an urgent need to identify sorghum genetic stocks with high potential to release functional-BNIs for suppressing nitrification and to improve nitrogen use efficiency in sorghum-based production systems.  相似文献   
4.
Enzyme-based catalysis has become one of the most important disciplines in organic synthesis and plays a noteworthy role in the establishment of many chemical industries, e.g. fine chemicals, food or energy, textiles, agricultural, cosmeceutical, medicinal and pharmaceutical industries. However, pristine enzymes fail to demonstrate requisite functionalities for an industrial setting where extremely specific and stable catalysts are required. Immobilization enhances the catalytic stability and activity of enzymes and trims the overall cost burden of the enzyme. Therefore, it widely endeavours for proficient, sustainable, and environmentally responsive catalytic processes. Amongst several immobilization strategies, e.g. (1) supports-assisted, i.e. physical or covalent coupling and (2) supports-free techniques, i.e. cross-linked enzyme crystals (CLECs) or aggregates are the most promising ones and widely pursued for enzyme immobilization purposes. This perspective review focuses on up-to-date developments in the area of enzyme immobilization and presents their potentialities to upgrade and/or modify enzyme properties. Both types of immobilization strategies, i.e. supports-assisted and supports-free techniques are discussed with particular reference to CLECs or aggregates and protein-coated microcrystals. Also, several useful traits achieved after immobilization are also discussed in the second half of the review.  相似文献   
5.
6.
Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN), with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS) prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67) or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid) neurons in the central pattern generator for swallowing.  相似文献   
7.
Protein prenylation is a post-translational modification where farnesyl or geranylgeranyl groups are enzymatically attached to a C-terminal cysteine residue. This modification is essential for the activity of small cellular GTPases, as it allows them to associate with intracellular membranes. Dissociated from membranes, prenylated proteins need to be transported through the aqueous cytoplasm by protein carriers that shield the hydrophobic anchor from the solvent. One such carrier is Rho GDP dissociation inhibitor (RhoGDI). Recently, it was shown that prenylated Rho proteins that are not associated with RhoGDI are subjected to proteolysis in the cell. We hypothesized that the role of RhoGDI might be not only to associate with prenylated proteins but also to regulate the prenylation process in the cell. This idea is supported by the fact that RhoGDI binds both unprenylated and prenylated Rho proteins with high affinity in vitro, and hence, these interactions may affect the kinetics of prenylation. We addressed this question experimentally and found that RhoGDI increased the catalytic efficiency of geranylgeranyl transferase-I in RhoA prenylation. Nevertheless, we did not observe formation of a ternary RhoGDI∗RhoA∗GGTase-I complex, indicating sequential operation of geranylgeranyltransferase-I and RhoGDI. Our results suggest that RhoGDI accelerates Rho prenylation by kinetically trapping the reaction product, thereby increasing the rate of product release.  相似文献   
8.
Phytoextraction has received increasing attention as a promising, cost-effective alternative to conventional engineering-based remediation methods for metal contaminated soils. In order to enhance the phytoremediative ability of green plants chelating agents are commonly used. Our study aims to evaluate whether, citric acid (CA) or elemental sulfur (S) should be used as an alternative to the ethylene diamine tetraacetic acid (EDTA)for chemically enhanced phytoextraction. Results showed that EDTA was more efficient than CA and S in solubilizing lead (Pb) from the soil. The application of EDTA and S increased the shoot biomass of wheat. However, application of CA at higher rates (30 mmol kg(-1)) resulted in significantly lower wheat biomass. Photosynthesis and transpiration rates increased with EDTA and S application, whereas these parameters were decreased with the application of CA. Elemental sulfur was ineffective for enhancing the concentration of Pb in wheat shoots. Although CA did not increase the Pb solubility measured at the end of experiment, however, it was more effective than EDTA in enhancing the concentration of Pb in the shoots of Triticum aestivum L. It was assumed that increase in Mn concentration to toxic levels in soil with CA addition might have resulted in unusual Pb concentration in wheat plants. The results of the present study suggest that under the conditions used in this experiment, CA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat compared to either EDTA or S.  相似文献   
9.
Summary Glycolipids should have potential effects as antitumor agents. However, very few studies have examined this property of digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) on colon cancer cells. Cell viability was determined every 24 h with sodium 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium dye reduction assay up to 72 h. Alkaline phosphatase activity was measured for assessing cell differentiation. Apoptosis was tested with enzyme-linked immunosorbent assay analysis. Growth of Caco-2 cells was inhibited apparently at 48 h after addition of SQDG and at 72 h with DGDG. Alkaline phosphatase activity of Caco-2 cells obviously increased in combination with DGDG or SQDG and sodium butyrate (NaBT) at 72 h, indicating that DGDG and SQDG enhanced cell differentiation induced with NaBT. An increased enrichment factor was found when the cell was treated in combination with DGDG or SQDG and NaBT. These results strongly suggest that DGDG and SQDG should be considered as the leading compounds of potentially useful colon cancer chemotherapy agents when NaBT is combined.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号