首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1988年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
Salient sensory environments experienced by a parental generation can exert intergenerational influences on offspring. While these data provide an exciting new perspective on biological inheritance, questions remain about causes and consequences of intergenerational influences of salient sensory experience. We previously showed that exposing male mice to a salient olfactory experience, like olfactory fear conditioning, resulted in offspring demonstrating a sensitivity to the odor used to condition the paternal generation and possessing enhanced neuroanatomical representation for that odor. In this study, we first injected RNA extracted from sperm of male mice that underwent olfactory fear conditioning into naïve single‐cell zygotes and found that adults that developed from these embryos had increased sensitivity and enhanced neuroanatomical representation for the odor (Odor A) with which the paternal male had been conditioned. Next, we found that female, but not male offspring sired by males conditioned with Odor A show enhanced consolidation of a weak single‐trial Odor A + shock fear conditioning protocol. Our data provide evidence that RNA found in the paternal germline after exposure to salient sensory experiences can contribute to intergenerational influences of such experiences, and that such intergenerational influences confer an element of adaptation to the offspring. In so doing, our study of intergenerational influences of parental sensory experience adds to existing literature on intergenerational influences of parental exposures to stress and dietary manipulations and suggests that some causes (sperm RNA) and consequences (behavioral flexibility) of intergenerational influences of parental experiences may be conserved across a variety of parental experiences.  相似文献   
2.
A greenhouse study was conducted over a 12-month period to investigate the fate of polycyclic aromatic hydrocarbons (PAHs) in soil using phytoremediation as a secondary treatment. The soil was pretreated by composting for 12 weeks, then planted with tall fescue (Festuca arundinacea), annual ryegrass (Lolium multiflorum), and yellow sweet clover (Melilotus officinalis). Two sets of unvegetated controls also were evaluated, one fertilized and one unfertilized. Total PAH concentrations decreased in the tall fescue, annual ryegrass, and yellow sweet clover treatments by 23.9%, 15.3%, and 9.1%, respectively, whereas the control was reduced by less than 5%. The smaller two- and most of the three-ringed compounds--naphthalene, acenaphthylene, acenaphthene, fluorene, and anthracene--were not found in detectable concentrations in any of the treatments. The most probable number analysis for microbial PAH degraders did not show any statistically significant differences among treatments. There were significant differences among treatments (p < 0.05) for the residual concentrations of five of the target PAHs. Root surface area measurements indicated that tall fescue and annual ryegrass both had significantly higher root surface area than yellow sweet clover, although the two species were not significantly different from each other. The tall fescue treatment resulted in the highest root and shoot biomass, followed by annual ryegrass and yellow sweet clover, and also had the highest percent of contaminant removal after 12 months. These results imply a positive relationship between plant biomass development and PAH biodegradation.  相似文献   
3.
4.
Aim of the present study was to evaluate in vitro toxicity and in vivo antibacterial, anti-inflammatory, antiulcer, and antioxidant activities of two organoselenium compounds, selenocystine (SeCys) and ebselen (Ebs). The study was conducted in experimentally induced ulcers in rodent model infected with Helicobacter pylori (H. pylori). In vitro toxicological studies on normal spleenic lymphocytes revealed that SeCys and Ebs were non-toxic to the cells even at 100 μM concentration. Antibacterial activity was observed at 500 μg/mL concentration of either of the compounds against H. pylori. In vivo studies after treatment with SeCys and Ebs (500 μg/kg/day) resulted in significant reduction in ROS production and inhibition of lipid peroxidation in gastric tissue. The antioxidant and anti-inflammatory activities of both the compounds were also confirmed by their ability to lower GSH reduction, to induce the expression of antioxidant genes such as GPx-4, and MnSOD and to suppress inflammatory genes namely COX-2, TNF-α and TGF-β. In addition, the immunomodulatory activity of both the compounds was evident by enhance of the CD4 levels and maintenance of the IgG, IL-6 and IL-10 levels. Persistent treatment (500 μg/kg, for 28 days) with both the compounds showed considerable (p < 0.05) ulcer healing property supporting its role in gastro protection. In conclusion, the results of our study suggest that both SeCys and Ebs possess broad spectrum of activities without any potential toxicity.  相似文献   
5.
The potentiating effects of cyanide on the inhibition of rat liver mitochondrial monoamine oxidase-A & B and of ox liver mitochondrial MAO-B by pheniprazine [(1-methyl-2-phenylethyl)hydrazine] has been studied. Pheniprazine was shown to behave as a mechanism-based MAO inhibitor. For rat liver MAO-B, the initial non-covalent step was characterized by dissociation constant (K i) of 2450 nM and the first-order rate constant (k +2) for the covalent adduct formation was 0.16 min−1. As a reversible inhibitor it was selective towards rat liver MAO-A (K i = 420 nM) but the rate of irreversible inhibition of that enzyme was considerably slower (k +2 = 0.06 min−1). MAO-B from ox liver more closely resembled MAO-A from the rat in sensitivity to reversible inhibition by pheniprazine (K i = 450 nm) but it was closer to rat liver MAO-B in rate of irreversible inhibition (k +2 = 0.29 min−1). The K i values were significantly decreased in the presence of KCN but there was little effect on the k +2 values. However, sensitivities of the different enzymes to KCN varied widely and considerably higher concentrations of KCN were required for this effect to be apparent with the rat liver mitochondrial MAO-A than with MAO-B from rat and ox liver. The kinetic behaviour of cyanide activation was consistent with partial (non-essential) competitive activation in all cases. Special issue dedicated to Dr. Moussa Youdim.  相似文献   
6.
Meckel–Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder characterized by developmental defects of the central nervous system that comprise neural tube defects that most commonly present as occipital encephalocele. MKS is considered to be the most common syndromic form of neural tube defect. MKS is genetically heterogeneous with six known disease genes: MKS1, MKS2/TMEM216, MKS3/TMEM67, RPGRIP1L, CEP290, and CC2D2A with the encoded proteins all implicated in the correct function of primary cilia. Primary cilia are microtubule-based organelles that project from the apical surface of most epithelial cell types. Recent progress has implicated the involvement of cilia in the Wnt and Shh signaling pathways and has led to an understanding of their role in normal mammalian neurodevelopment. The aim of this review is to provide an overview of the molecular genetics of the human disorder, and to assess recent insights into the etiology and molecular cell biology of severe ciliopathies from mammalian animal models of MKS.  相似文献   
7.
8.
9.
10.
Abnormal ocular motility is a common clinical feature in congenital cranial dysinnervation disorder (CCDD). To date, eight genes related to neuronal development have been associated with different CCDD phenotypes. By using linkage analysis, candidate gene screening, and exome sequencing, we identified three mutations in collagen, type XXV, alpha 1 (COL25A1) in individuals with autosomal-recessive inheritance of CCDD ophthalmic phenotypes. These mutations affected either stability or levels of the protein. We further detected altered levels of sAPP (neuronal protein involved in axon guidance and synaptogenesis) and TUBB3 (encoded by TUBB3, which is mutated in CFEOM3) as a result of null mutations in COL25A1. Our data suggest that lack of COL25A1 might interfere with molecular pathways involved in oculomotor neuron development, leading to CCDD phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号