Vascular dementia (VaD) is a degenerative cerebrovascular disorder that leads to progressive decline in cognitive abilities and memory. Several reports demonstrated that oxidative stress and endothelial dysfunction are principal pathogenic factors in VaD. The present study was constructed to determine the possible neuroprotective effects of simvastatin in comparison with cilostazol in VaD induced by l-methionine in rats. Male Wistar rats were divided into four groups. Group I (control group), group II received l-methionine (1.7 g/kg, p.o.) for 32 days. The remaining two groups received simvastatin (50 mg/kg, p.o.) and cilostazol (100 mg/kg, p.o.), respectively, for 32 days after induction of VaD by l-methionine. Subsequently, rats were tested for cognitive performance using Morris water maze test then sacrificed for biochemical and histopathological assays. l-methionine induced VaD reflected by alterations in rats’ behavior as well as the estimated neurotransmitters, acetylcholinesterase activity as well as increased brain oxidative stress and inflammation parallel to histopathological changes in brain tissue. Treatment of rats with simvastatin ameliorated l-methionine-induced behavioral, neurochemical, and histological changes in a manner comparable to cilostazol. Simvastatin may be regarded as a potential therapeutic strategy for the treatment of VaD. To the best of our knowledge, this is the first study to reveal the neuroprotective effects of simvastatin or cilostazol in l-methionine-induced VaD.
In this work, the constructed bioluminescent Acinetobacter strain DF4/PUTK2 was employed to assess the toxicity of phenolic compounds and the 5 min EC50 values were calculated. The results of the DF4/PUTK2 assay were further evaluated by comparing with the results of the Vibrio fischeri luminescence inhibition assay. To develop a bioassay system appropriate to be used in continuous toxicity testing, strain DF4/PUTK2 was subjected for immobilization in microtiter plates into the matrices Ca-alginate, polyacrylamide, agar and agarose. After a choice of materials was tried, Ca-alginate was selected as the most suitable candidate material. Because, it could be stored at least 8 weeks at 4 °C, during which the ability of the bioreporter DF4/PUTK2 to detect the toxicity of phenolics was maintained. However, the stability of the bioluminescence for DF4/PUTK2 cells immobilized into agarose and agar was significantly less than that of cells stored in alginate suspensions. This study recommended that luxCDABE-marked Acinetobacter strain DF4/PUTK2 could be employed to assay the ecotoxicity of environmental samples contaminated with phenols. The host strain of the bioreporter DF4/PUTK2 is Acinetobacter strain DF4. It is known that members of the genus Acinetobacter are widespread in nature and also involved in biodegradation, leaching and removal of several organic and inorganic man-made hazardous wastes. 相似文献
No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals. 相似文献
Twelve selected phenol-degrading bacterial isolates were obtained on phenol agar plates using culture enrichment technique. Molecular identification of the isolates was performed using eubacterial 16S rRNA PCR specific primers. Based on 16S rDNA sequence analysis, the results revealed that the majority of the isolates (8 out of 12) are affiliated to the g-subdivision of Proteobacteria. Four out of the eight isolates are closely related to the genus Acinetobacter. Molecular heterogeneity among the phenol-degrading isolates was further investigated by using rep-PCR chromosomal fingerprinting and correlated with plasmid and antibiotic profile analysis. Rep-PCR results strongly confirmed that the bacterial isolates from different environmental sites produced different fingerprinting patterns. The mineralization of phenol by all isolates was evaluated using 14C-labeled phenol assay. Phenol mineralization ranged from 55% (W-17) to 0.4% (Sea-9). This was further confirmed by the detection of several monoaromatic and polyaromatic degrading genes, e.g., pheA, MopR, XylE, and NahA. In addition, catalytic enzymes such as catalase and dioxygenase were also monitored. 相似文献
CD8 T cells have been shown to play an important role in the clearance and protection against fatal Ebola virus infection. In this study, we examined the mechanisms by which CD8 T cells mediate this protection. Our data demonstrate that all normal mice infected s.c. with a mouse-adapted Ebola virus survived the infection, as did 100% of mice deficient in Fas and 90% of those deficient in IFN-gamma. In contrast, perforin-deficient mice uniformly died after s.c. challenge. Perforin-deficient mice failed to clear viral infection even though they developed normal levels of neutralizing anti-Ebola Abs and 5- to 10-fold higher levels of IFN-gamma than control mice. Using MHC class I tetramers, we have also shown that perforin-deficient mice have 2- to 4-fold higher numbers of Ebola-specific CD8s than control mice. These findings suggest that the clearance of Ebola virus is perforin-dependent and provide an additional example showing that this basic immunologic mechanism is not limited to the clearance of noncytopathic viruses. 相似文献
Transmembrane helix (TMH) topology prediction is becoming a focal problem in bioinformatics because the structure of TM proteins is difficult to determine using experimental methods. Therefore, methods that can computationally predict the topology of helical membrane proteins are highly desirable. In this paper we introduce TMHindex, a method for detecting TMH segments using only the amino acid sequence information. Each amino acid in a protein sequence is represented by a Compositional Index, which is deduced from a combination of the difference in amino acid occurrences in TMH and non-TMH segments in training protein sequences and the amino acid composition information. Furthermore, a genetic algorithm was employed to find the optimal threshold value for the separation of TMH segments from non-TMH segments. The method successfully predicted 376 out of the 378 TMH segments in a dataset consisting of 70 test protein sequences. The sensitivity and specificity for classifying each amino acid in every protein sequence in the dataset was 0.901 and 0.865, respectively. To assess the generality of TMHindex, we also tested the approach on another standard 73-protein 3D helix dataset. TMHindex correctly predicted 91.8% of proteins based on TM segments. The level of the accuracy achieved using TMHindex in comparison to other recent approaches for predicting the topology of TM proteins is a strong argument in favor of our proposed method. Availability: The datasets, software together with supplementary materials are available at: http://faculty.uaeu.ac.ae/nzaki/TMHindex.htm. 相似文献