首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   54篇
  国内免费   1篇
  2024年   4篇
  2023年   29篇
  2022年   47篇
  2021年   73篇
  2020年   84篇
  2019年   117篇
  2018年   73篇
  2017年   43篇
  2016年   66篇
  2015年   29篇
  2014年   65篇
  2013年   73篇
  2012年   61篇
  2011年   65篇
  2010年   28篇
  2009年   30篇
  2008年   30篇
  2007年   39篇
  2006年   24篇
  2005年   20篇
  2004年   20篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1995年   4篇
  1992年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1949年   1篇
  1938年   1篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
1.
Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.  相似文献   
2.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
3.
Mycobacteria have the ability to persist within host phagocytes, and their success as intracellular pathogens is thought to be related to the ability to modify their intracellular environment. After entry into phagocytes, mycobacteria-containing phagosomes acquire markers for the endosomal pathway, but do not fuse with lysosomes. The molecular machinery that is involved in the entry and survival of mycobacteria in host cells is poorly characterized. Here we describe the use of organelle electrophoresis to study the uptake of Mycobacterium bovis bacille Calmette Guerin (BCG) into murine macrophages. We demonstrate that live, but not dead, mycobacteria occupy a phagosome that can be physically separated from endosomal/lysosomal compartments. Biochemical analysis of purified mycobacterial phagosomes revealed the absence of endosomal/lysosomal markers LAMP-1 and β-hexosaminidase. Combining subcellular fractionation with two-dimensional gel electrophoresis, we found that a set of host proteins was present in phagosomes that were absent from endosomal/lysosomal compartments. The residence of mycobacteria in compartments outside the endosomal/lysosomal system may explain their persistence inside host cells and their sequestration from immune recognition. Furthermore, the approach described here may contribute to an improved understanding of the molecular mechanisms that determine the intracellular fate of mycobacteria during infection.  相似文献   
4.
5.
Summary Leaf disc transformation-regeneration technique was applied to the drought tolerant wild relative of cultivated tomato,Lycopersicon chilense, using a plasmid construct which contained the coding sequences of neomycin phosphotransferase (NPTII) and chloramphenicol acetyltransferase (CAT) genes. The two genotypes used, LA2747 and LA1930, showed a distinct difference in their aptitude to transformation; a higher success rate was obtained for the first genotype in every stage of the process. Shoots were formed on the regeneration medium containing 100 g/ml kanamycin through direct or indirect organogenesis. Root formation became only possible when the concentration of kanamycin was reduced to 50 g/ml. Expression of chloramphenicol acetyltransferase gene was observed in all of the kanamycin-screened plants after they matured; the activity of the gene was absent or low in some of the young plants. The presence of the CAT gene in transgenic plants was further confirmed by Southern blot analysis. Although transgenic plants grew to maturity, they did not produce fruit, owing to the self incompatibility ofL. chilense. Abbreviations BAP 6-benzylaminopurine - CAT chloramphenicol acetyltransferase - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - LB Luria Broth - EDTA ethylenediamine-tetraacetic acid  相似文献   
6.
Parasitism is a successful life strategy that has evolved independently in several families of vascular plants. The genera Cuscuta and Orobanche represent examples of the two profoundly different groups of parasites: one parasitizing host shoots and the other infecting host roots. In this study, we sequenced and described the overall repertoire of small RNAs from Cuscuta campestris and Orobanche aegyptiaca. We showed that C. campestris contains a number of novel microRNAs (miRNAs) in addition to a conspicuous retention of miRNAs that are typically lacking in other Solanales, while several typically conserved miRNAs seem to have become obsolete in the parasite. One new miRNA appears to be derived from a horizontal gene transfer event. The exploratory analysis of the miRNA population (exploratory due to the absence of a full genomic sequence for reference) from the root parasitic O. aegyptiaca also revealed a loss of a number of miRNAs compared to photosynthetic species from the same order. In summary, our study shows partly similar evolutionary signatures in the RNA silencing machinery in both parasites. Our data bear proof for the dynamism of this regulatory mechanism in parasitic plants.

MicroRNAs in parasitic plants reflect their lifestyle.  相似文献   
7.
Different growth factors can regulate stem cell differentiation. We used keratinocyte growth factor (KGF) to direct adipose‐derived stem cells (ASCs) differentiation into keratinocytes. To enhance KGF bioavailability, we targeted KGF for collagen by fusing it to collagen‐binding domain from Vibrio mimicus metalloprotease (vibrioCBD‐KGF). KGF and vibrioCBD‐KGF were expressed in Escherichia coli and purified to homogeneity. Both proteins displayed comparable activities in stimulating proliferation of HEK‐293 and MCF‐7 cells. vibrioCBD‐KGF demonstrated enhanced collagen‐binding affinity in immunofluorescence and ELISA. KGF and vibrioCBD‐KGF at different concentrations (2, 10, and 20 ng/ml) were applied for 21 days on ASCs cultured on collagen‐coated plates. Keratinocyte differentiation was assessed based on morphological changes, the expression of keratinocyte markers (Keratin‐10 and Involucrin), and stem cell markers (Collagen‐I and Vimentin) by real‐time PCR or immunofluorescence. Our results indicated that the expression of keratinocyte markers was substantially increased at all concentrations of vibrioCBD‐KGF, while it was observed for KGF only at 20 ng/ml. Immunofluorescence staining approved this finding. Moreover, down‐regulation of Collagen‐I, an indicator of differentiation commitment, was more significant in samples treated with vibrioCBD‐KGF. The present study showed that vibrioCBD‐KGF is more potent in inducing the ASCs differentiation into keratinocytes compared to KGF. Our results have important implications for effective skin regeneration using collagen‐based biomaterials.  相似文献   
8.
ABSTRACT: INTRODUCTION: Hemophilia A is an X linked recessive hemorrhagic disorder caused by mutations in the F8 gene that lead to qualitative and/or quantitative deficiencies of coagulation factor VIII (FVIII). Molecular diagnosis of hemophilia A is challenging because of the high number of different causative mutations that are distributed throughout the large F8 gene. Molecular studies of these mutations are essential in order to reinforce our understanding of their pathogenic effect responsible for the disorder. Aim In this study we have performed molecular analysis of 28 Tunisian hemophilia A patients and analyzed the F8 mutation spectrum. METHODS: We screened the presence of intron 22 and intron 1 inversion in severe hemophilia A patients by southern blotting and polymerase chain reaction (PCR). Detection of point mutations was performed by dHPLC/sequencing of the coding F8 gene region. We predict the potential functional consequences of novel missense mutations with bioinformatics approaches and mapping of their spatial positions on the available FVIII 3D structure. RESULTS: We identified 23 different mutations in 28 Tunisian hemophilia A patients belonging to 22 unrelated families. The identified mutations included 5 intron 22 inversions, 7 insertions, 4 deletions and 7 substitutions. In total 18 point mutations were identified, of which 9 are located in exon 14, the most mutated exonic sequence in the F8 gene. Among the 23 mutations, 8 are novel and not deposited in the HAMSTeRS database nor described in recently published articles. CONCLUSION: The mutation spectrum of Tunisian hemophilia A patients is heterogeneous with the presence of some characteristic features. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1693269827490715.  相似文献   
9.
Cervical cancer is the second most common cause of cancer-related death among women worldwide, especially in developing countries. Oxidative stress has been associated with cervical cancer. Many studies demonstrated that the low level of antioxidants induces the production of free radicals that cause lipid peroxidation, DNA, and protein damage leading to mutations that favors malignant transformation. This is a case-control institutional study conducted to evaluate the level of oxidative stress in cervical cancer patients and the age-matched healthy controls. We measured level of TBARS expressed as MDA, activity of SOD and GSH level by the spectrophotometric method, and level of 8-OHdG was estimated using a competitive sandwich ELISA assay. Our results showed a significant increase in the level of lipid peroxidation in group IV when compared to the control, group II and group III (p < 0.001). The activity of SOD was also significantly higher in group IV when compared to the control group (p < 0.001), group II (p < 0.001), and group III (p < 0.001). The level of GSH was also significantly lower in group IV when compared to the control group (p < 0.01), group II (p < 0.01), and group III (p < 0.01). The level of 8-OHdG was significantly higher in group IV than in the other groups (p < 0.01). The results suggest that oxidative stress is involved in the pathogenesis of cervical cancer, which is demonstrated by an increased level of lipid peroxidation and higher levels of 8-OHdG and an altered antioxidant defense system.  相似文献   
10.
Different signaling pathways are implicated in proliferation and differentiation of stem cells. Bone Morphogenesis Pathway (BMP) signaling was known to display an important function in osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs). In the present study, the authors investigated whether blocking BMP signaling was associated with down regulation of Nestin expression as neural stem cell marker in peripheral blood derived mesenchymal stem cells (PB-MSCs). At first, MSCs were isolated from peripheral blood by plastic adherent ability and flow cytometry analysis. After reaching the confluence, the cells were treated with medium containing Noggin as antagonist of BMP signaling upon 8 days. Real time PCR analysis indicated that the expression of Nestin was diminished in PB-MSCs by attenuating BMP signaling. The obtained results suggested that BMP signaling might have a regulatory function on the Nestin expression in mesenchymal stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号