排序方式: 共有37条查询结果,搜索用时 0 毫秒
1.
Maryam Mansourpour Reza Mahjub Mohsen Amini Seyed Naser Ostad Elnaz Sadat Shamsa Morteza Rafiee- Tehrani Farid Abedin Dorkoosh 《AAPS PharmSciTech》2015,16(4):952-962
In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic β-cyclodextrin polymers (CPβCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPβCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin–CβCDPs complex was prepared by mixing 1:1 portion of insulin and CPβCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPβCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mμ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system.KEY WORDS: alginate, cationic β-cyclodextrin, insulin nanoparticle, oral delivery, trimethyl chitosan 相似文献
2.
J J Roslyn M Z Abedin K D Saunders J A Cates S D Strichartz M Alperin M Fromm C E Palant 《Comparative biochemistry and physiology. A, Comparative physiology》1991,100(2):335-341
1. Prairie dog gallbladders mounted in a Ussing-type chamber and bathed with symmetrical Ringer's solutions exhibited a transepithelial resistance (Rt) of 51 +/- 5 omega cm2, a lumen negative potential difference (Vms) of 11.5 +/- 0.7 mV and a short-circuit current (Isc) of 6.9 +/- 0.3 microEq/hr/cm2. 2. Radioisotopic ion flux experiments revealed that the basal Isc of 6.9 +/- 0.3 microEq/hr/cm2 was mostly accounted for by net Na+ absorption of 3.2 +/- 0.5 microEq/hr/cm2 and net Cl- secretion of 2.9 +/- 0.3 microEq/hr/cm2. 3. In HCO3- free Ringer's, net Na+ flux was virtually abolished, net Cl- flux decreased by 50% and Isc was reduced by 77%. 4. 10(-3) M mucosal amiloride and DIDS reduced Isc by 28 and 24%, respectively. 5. Mucosal NaCl diffusion potentials indicated that the paracellular pathway was cation selective. 6. Thin section electron micrographs showed a single cell population in this epithelium suggesting that net Na+ absorption and Cl- secretion may emerge from the same cells. 7. We conclude that prairie dog gallbladder epithelium is an electrogenic tissue and, in contrast to gallbladders of most other species, simultaneously but independently absorbs Na+ and secretes Cl-. 相似文献
3.
M Z Abedin S Ayad J B Weiss 《Biochemical and biophysical research communications》1981,102(4):1237-1245
4.
5.
M.Z. Abedin D.I.N. Giurgiu Z.R. Abedin E.A. Peck X. Su P.R. Smith 《The Journal of membrane biology》2001,182(2):123-134
Gallbladder Na+ absorption is linked to gallstone formation in prairie dogs. Na+/H+ exchange (NHE) is one of the major Na+ absorptive pathways in gallbladder. In this study, we measured gallbladder Na+/H+ exchange and characterized the NHE isoforms expressed in prairie dogs. Na+/H+ exchange activity was assessed by measuring amiloride-inhibitable transepithelial Na+ flux and apical 22Na+ uptake using dimethylamiloride (DMA). HOE-694 was used to determine NHE2 and NHE3 contributions. Basal J
Na
ms was higher than J
Na
sm with J
Na
net absorption. Mucosal DMA inhibited transepithelial Na+ flux in a dose-dependent fashion, causing J
Na
ms equal to J
Na
sm and blocking J
Na
net absorption at 100 μm. Basal 22Na+ uptake rate was 10.9 ± 1.0 μmol · cm−2· hr−1 which was inhibited by ∼43% by mucosal DMA and ∼30% by mucosal HOE-694 at 100 μm. RT-PCR and Northern blot analysis demonstrated expression of mRNAs encoding NHE1, NHE2 and NHE3 in the gallbladder. Expression
of NHE1, NHE2 and NHE3 polypeptides was confirmed using isoform-specific anti-NHE antibodies. These data suggest that Na+/H+ exchange accounts for a substantial fraction of gallbladder apical Na+ entry and most of net Na+ absorption in prairie dogs. The NHE2 and NHE3 isoforms, but not NHE1, are involved in gallbladder apical Na+ uptake and transepithelial Na+ absorption.
Received: 9 February 2001/Revised: 11 April 2001 相似文献
6.
Uptake kinetics of arsenic species in rice plants 总被引:35,自引:0,他引:35
Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid. 相似文献
7.
Md. Abir Ul Islam Juthy Abedin Nupur Charles T. Hunter Abdullah Al Mamun Sohag Ashaduzzaman Sagar Md. Sazzad Hossain Mona F. A. Dawood Arafat Abdel Hamed Abdel Latef Marián Brestič Md. Tahjib-UI-Arif 《Phyton》2022,91(8):1557-1583
Moringa leaf extract (MLE) has been shown to promote beneficial outcomes in animals and plants. It is rich in amino acids, antioxidants, phytohormones, minerals, and many other bioactive compounds with nutritional and growth-promoting potential. Recent reports indicated that MLE improved abiotic stress tolerance in plants. Our understanding of the mechanisms underlying MLE-mediated abiotic stress tolerance remains limited. This review summarizes the existing literature on the role of MLE in promoting plant abiotic stress acclimation processes. MLE is applied to plants in a variety of ways, including foliar spray, rooting media, and seed priming. Exogenous application of MLE promoted crop plant growth, photosynthesis, and yield under both nonstress and abiotic stress conditions. MLE treatment reduced the severity of osmotic and oxidative stress in plants by regulating osmolyte accumulation, antioxidant synthesis, and secondary metabolites. MLE also improves mineral homeostasis in the presence of abiotic stress. Overall, this review describes the potential mechanisms underpinning MLE-mediated stress tolerance. 相似文献
8.
Muhamad Zahidur Rahman Hosneara Khanam Makoto Ueno Junichi Kihara Yuichi Honda Sakae Arase 《Journal of Phytopathology》2010,158(5):378-381
The effect of red light irradiation on development of Corynespora leaf spot of cucumber plants (Cucumis sativus L. cv. Hokushin) caused by Corynespora cassiicola (Berk. & Court.) was investigated in greenhouses. In a greenhouse without red light (?Red), lesions enlarged, coalesced, and finally covered the entire leaves of cucumber. In a greenhouse with red light (+Red), however, lesion appearance was delayed relative to that under ?Red and its development was also significantly suppressed. Such difference in disease development was also observed in cucumbers grown under +Red and ?Red in the same greenhouse. Disease suppression under red light was also observed in glasshouse‐grown C. cassiicola‐inoculated cucumbers. Red light did not inhibit the infection behaviour of the pathogen. Our results indicated that the delay and suppression of Corynespora leaf spot of cucumber under +Red were due to induction of resistance in cucumber, and not to differences in environmental conditions or fungal population between the two greenhouses. Red light‐induced resistance might contribute to the development of new methods for controlling Corynespora leaf spot of greenhouse‐grown cucumber. 相似文献
9.
Protein synthesis studies increasingly focus on delineating the nature of conformational changes occurring as the ribosome exerts its catalytic functions. Here, we use FRET to examine such changes during single-turnover EF-G-dependent GTPase on vacant ribosomes and to elucidate the mechanism by which fusidic acid (FA) inhibits multiple-turnover EF-G.GTPase. Our measurements focus on the distance between the G' region of EF-G and the N-terminal region of L11 (L11-NTD), located within the GTPase activation center of the ribosome. We demonstrate that single-turnover ribosome-dependent EF-G GTPase proceeds according to a kinetic scheme in which rapid G' to L11-NTD movement requires prior GTP hydrolysis and, via branching pathways, either precedes P(i) release (major pathway) or occurs simultaneously with it (minor pathway). Such movement retards P(i) release, with the result that P(i) release is essentially rate-determining in single-turnover GTPase. This is the most significant difference between the EF-G.GTPase activities of vacant and translocating ribosomes [Savelsbergh, A., Katunin, V. I., Mohr, D., Peske, F., Rodnina, M. V., and Wintermeyer, W. (2003) Mol. Cell 11, 1517-1523], which are otherwise quite similar. Both the G' to L11-NTD movement and P(i) release are strongly inhibited by thiostrepton but not by FA. Contrary to the standard view that FA permits only a single round of GTP hydrolysis [Bodley, J. W., Zieve, F. J., and Lin, L. (1970) J. Biol. Chem. 245, 5662-5667], we find that FA functions rather as a slow inhibitor of EF-G.GTPase, permitting a number of GTPase turnovers prior to complete inhibition while inducing a closer approach of EF-G to the GAC than is seen during normal turnover. 相似文献
10.
Moonga BS Davidson R Sun L Adebanjo OA Moser J Abedin M Zaidi N Huang CL Zaidi M 《Biochemical and biophysical research communications》2001,283(4):770-775
We provide the first demonstration for a Na+/Ca2+ exchanger, NCX-1, in the osteoclast. We speculate that by using Na+ exchange, NCX-1 couples H+ extrusion with Ca2+ fluxes during bone resorption. Microspectrofluorimetry of fura-2-loaded osteoclasts revealed a rapid and sustained, but reversible, cytosolic Ca2+ elevation upon Na+ withdrawal. This elevation was abolished by the cytosolic introduction (by gentle permeabilization) of a highly specific Na+/Ca2+ exchange inhibitor peptide, XIP, but not its inactive analogue, sXIP. Confocal microscopy revealed intense plasma membrane immunofluorescence with an isoform-specific monoclonal anti-NCX-1 antibody applied to gently permeabilized osteoclasts. Electrophysiological studies using excised outside-in membrane patches showed a low-conductance, Na+-selective, dichlorobenzamil-sensitive, amiloride-insensitive channel that we tentatively assigned as being an NCX. Finally, to examine for physiological relevance, an osteoclast resorption (pit) assay was performed. There was a dramatic reduction of bone resorption following NCX-1 inhibition by dichlorobenzamil and XIP (but not with S-XIP). Together, the results suggest that a functional NCX, likely NCX-1, is involved in the regulation of osteoclast cytosolic Ca2+ and bone resorption. 相似文献