首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   7篇
  国内免费   1篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Cell poking, a new method for measuring mechanical properties of single cells was used to determine the elastic area compressibility modulus of osmotically swollen human erythrocytes. With this method we determined the force required to indent cells attached to a glass coverslip (Petersen, N.O., W. B. McConnaughey , and E. L. Elson , 1982, Proc. Natl. Acad. Sci. USA, 79:5327. Forces on the order of one millidyne and indentations on the order of one micron were detected. An analysis of these data in terms of a simplified mechanical model yielded the elastic area compressibility modulus. This analysis used a variational approach to minimize the isothermal elastic potential energy density function given by E. A. Evans and R. Skalak (Mechanics and Thermodynamics of Biomembranes, 1980, CRC Press, Boca Raton , FL). Measurements on swollen erythrocytes gave a range of values, depending in part on the osmotic conditions, of 17.9 +/- 8.2 to 34.8 +/- 12.0 mdyn /micron for the elastic area compressibility modulus at 25 degrees C. Fractional area expansion greater than 2.6 +/- 0.8% produced rapid cell lysis. These values were not corrected for the reversible movement of water across the cell membrane in response to hydrostatic pressure gradients. Our results agree reasonably with those obtained by Evans et al. (Evans, E.A., R. Waugh , and L. Melnick , 1976, Biophys. J., 16:585-595.) using micropipette aspiration under similar conditions.  相似文献   
2.
Abstract Genetic diversity of Korean populations in Hosta clausa was investigated using starch gel electrophoresis. Hosta clausa is widespread, grows only along streamsides, and has both sexual and asexual reproduction. Populations of the species are small and isolated. Thirty-two percent of the loci examined were polymorphic, and mean genetic diversity within populations (Hep=0.082) was lower than mean estimates for species with very similar life history characteristics (0.131), particularly for its congener H. yingeri (0.250). The mean number of multilocus genotypes per population was 8.7, and genotypic diversity index (DG) was 0.84. Significant differences in allele frequencies among populations were found in all seven polymorphic loci (P < 0.001). About one-fifth of the total allozyme variation was among populations (GST=0.192). Indirect estimate of the number of migrants per generation (Nm=0.48, calculated from mean GST) and nine private alleles found indicate that gene movement among populations was low. The low levels of genetic diversity within populations and the relatively high levels of genetic diversity among populations suggest that strong moist habitat preferences, clonal reproduction, low level of gene flow among populations, genetic drift, and historical events may have played roles in the genetic structuring of the species.  相似文献   
3.
The consequence of harvesting young leaves of cassava as vegetable on the vulnerability of the crop to cassava mosaic disease (CMD) and on storage root yield was investigated using 30 cassava genotypes planted in IITA fields located in the humid forest (Port Harcourt?:?Onne), forest-savannah transition (Ibadan), southern guinea savannah (Mokwa) and northern guinea savannah (Zaria) agroecologies in Nigeria. Tender apical leaves and shoots of the cassava genotypes were removed from forty plants per cassava genotype with the same number of plants considered as control. Whitefly infestation, disease incidence (DI) and symptom severity (ISS) of the disease were assessed at monthly interval for six months and also at the ninth month after planting (MAP). Yield reduction due to this treatment was calculated as percentage harvest index (HI). Whitefly population fluctuated throughout the period of observation at all locations with higher population obtained generally for treated plants compared to control plants. Sprouting leaves of some treated genotypes were observed with severe mosaic symptoms, while corresponding control showed no mosaic symptoms. Contrarily, no remarkable difference was observed in Zaria between the mean ISS of treated and control cassava genotypes. There was a highly significant difference (P?<?0.01) in DI and ISS among cassava genotypes across all locations. Also, there was a highly significant interaction (P?<?0.01) in symptom severity between location (loc) and genotype, genotype and treatment (trt), loc and trt. Interaction between loc, genotypes and trt with regard to DI was highly significant at 2, 3 and 4 MAP, while with ISS, the interaction was highly significant all through the counting period. There was a positive relationship between DI and ISS on plants of genotypes 96/1039 and ISU. The percentage HI (27.4) of treated plants of genotype 95/0166 in Ibadan was remarkably lower than the value obtained for corresponding control (41.9) plants. Also, sharp distinction in% HI of treated (39.5) and control (43.8) ISU was observed in Onne with their respective ISS values as 3.7 and 3.2. Therefore, harvesting tender apical leaves and shoots of cassava as vegetables should be discouraged as it increases the severity of CMD infection in the regenerating shoots of cassava with attendant storage root yield reduction.  相似文献   
4.
Molybdenum is an essential component of the cofactors of many metalloenzymes including nitrate reductase and Mo-nitrogenase. The cyanobacterium Anabaena variabilis ATCC 29413 uses nitrate and atmospheric N2 as sources of nitrogen for growth. Two of the three nitrogenases in this strain are Mo-dependent enzymes, as is nitrate reductase; thus, transport of molybdate is important for growth of this strain. High-affinity transport of molybdate in A. variabilis was mediated by an ABC-type transport system encoded by the products of modA and modBC. The modBC gene comprised a fused orf including components corresponding to modB and modC of Escherichia coli. The deduced ModC part of the fused gene lacked a recognizable molybdate-binding domain. Expression of modA and modBC was induced by starvation for molybdate. Mutants in modA or modBC were unable to grow using nitrate or Mo-nitrogenase. Growth using the alternative V-nitrogenase was not impaired in the mutants. A high concentration of molybdate (10 microM) supported normal growth of the modBC mutant using the Nif1 Mo-nitrogenase, indicating that there was a low-affinity molybdate transport system in this strain. The modBC mutant did not detectably transport low concentrations of 99Mo (molybdate), but did transport high concentrations. However, such transport was observed only after cells were starved for sulphate, suggesting that an inducible sulphate transport system might also serve as a low-affinity molybdate transport system in this strain.  相似文献   
5.
Bio-artificial tissues are being developed as replacements for damaged biologic tissues. Their mechanical properties are critical for load bearing applications. Current testing protocols for bio-artificial tissues vary widely and often do not consider viscoelasticity. Uniaxial stretch tests were performed on fibroblast populated collagen matrices (FPCMs) to determine the influence of specific test protocols on the mechanical behavior. The peak force, hysteresis and shape of the force-stretch curve are affected by the stretch rate, rest period, stretch amplitude and the number and magnitude of preconditioning cycles.  相似文献   
6.
Abstract 1. The majority of general life‐history models treat the environment as being invariable through time, even though temporal variation in selective agents could dramatically change the outcomes, e.g. in terms of optimal size and time at maturity. For herbivorous insects, seasonal differences in food quality are reasonably well described, but seasonal dynamics of top‐down selective forces are poorly documented. 2. The present study attempted to quantify seasonal changes in predation risk of folivorous insect larvae in temperate forest habitats. In a series of field experiments, artificial larvae were exposed to predators, and the resulting bird‐inflicted damage was recorded. The trials were repeated regularly throughout the course of two summers. 3. A distinct peak of larval mortality was recorded in mid‐June (the nestling period for most insectivorous passerine birds), after which predation risk declined to a plateau of 20–30% below the peak value. 4. The recorded pattern is interpreted as a consequence of seasonal changes in the number and behaviour of insectivorous birds, and the abundance of alternative food resources for these predators. 5. A quantitative analysis based on field data indicated that considering temporal variation in mortality in life‐history models is crucial for obtaining realistic predictions concerning central life‐history traits, such as final body size in different generations.  相似文献   
7.
Constitutive models are needed to relate the active and passive mechanical properties of cells to the overall mechanical response of bio-artificial tissues. The Zahalak model attempts to explicitly describe this link for a class of bio-artificial tissues. A fundamental assumption made by Zahalak is that cells stretch in perfect registry with a tissue. We show this assumption to be valid only for special cases, and we correct the Zahalak model accordingly. We focus on short-term and very long-term behavior, and therefore consider tissue constituents that are linear in their loading response (although not necessarily linear in unloading). In such cases, the average strain in a cell is related to the macroscopic tissue strain by a scalar we call the "strain factor". We incorporate a model predicting the strain factor into the Zahalak model, and then reinterpret experiments reported by Zahalak and co-workers to determine the in situ stiffness of cells in a tissue construct. We find that, without the modification in this article, the Zahalak model can underpredict cell stiffness by an order of magnitude.  相似文献   
8.
This paper reviews recent work aimed at deriving tractable constitutive relations for skeletal muscle from biophysical cross-bridge theories. Discussion is focused on a model proposed previously by the first author (the Distribution-Moment Model), which emphasizes the important role of the moments of the actin-myosin bond-distribution function. The theory leads to a relatively simple third order state variable model for contraction dynamics in which the state variables are the three lowest order moments of the bond-distribution function; further, these three moments have simple macroscopic interpretations as muscle stiffness, force, and elastic energy. New results are presented on the formulation of a compatible model for excitation-contraction coupling, and this model requires the introduction of only one more state variable--the free calcium concentration.  相似文献   
9.
The Distribution-Moment Model of skeletal muscle, which has been enhanced recently to make possible the calculation of chemical energy release (E) and heat production (H) rates [1], is applied to isometric muscle. Under steady-state isometric conditions the model predicts a simple relation between the energy rates and the muscle length, namely (E/Emax) = (H/Hmax) = [1 + B alpha(symbol see text)]/[1 + B], where (symbol see text) is the ratio of muscle length to the "optimal" length at which maximal isometric tension is produced, and alpha (symbol see text) is a function numerically equal to the ratio of the tetanic isometric force to its maximum value. The single dimensionless constant in this relation, B, can be calculated from model parameters characterizing muscle dynamics at the optimum length, and has a value near unity for frog sartorius at 0 degrees C. The predicted behavior is shown to agree reasonably well with experimental measurements of heat production and phosphocreatine (PCr) hydrolysis. The model relates the isometric energy rates to PCr hydrolysis in (1) cross-bridge interactions, and (2) calcium pumping into the sarcoplasmic reticulum.  相似文献   
10.
A distribution-moment model of energetics in skeletal muscle   总被引:1,自引:0,他引:1  
In this paper we develop a theory for calculating the chemical energy liberation and heat production of a skeletal muscle subjected to an arbitrary history of stimulation, loading, and length variation. This theory is based on and complements the distribution-moment (DM) model of muscle [Zahalak and Ma, J. biomech. Engng 112, 52-62 (1990)]. The DM model is a mathematical approximation of the A. F. Huxley cross-bridge theory and represents a muscle in terms of five (normalized) state variables: A, the muscle length, c, the sarcoplasmic free calcium concentration, and Q0, Q1, Q2, the first three moments of the actin-myosin bond-distribution function (which, respectively, have macroscopic interpretations as the muscle stiffness, force, and elastic energy stored in the contractile tissue). From this model are derived two equations which predict the chemical energy liberation and heat production rates in terms of the five DM state variables, and which take account of the following factors: (1) phosphocreatine hydrolysis associated with cross-bridge cycling; (2) phosphocreatine hydrolysis associated with sarcoplasmic-reticulum pumping of calcium; (3) passive calcium flux across the sarcoplasmic-reticulum membrane; (4) calcium-troponin bonding; (5) cross-bridge bonding at zero strain; (6) cross-bridge strain energy; (7) tendon strain energy; and (8) external work. Using estimated parameters appropriate for a frog sartorius at 0 degree C, the energy rates are calculated for several experiments reported in the literature, and reasonable agreement is found between our model and the measurements. (The selected experiments are confined to the plateau of the isometric length-tension curve, although our theory admits arbitrary length variations.) The two most important contributions to the energy rates are phosphocreatine hydrolysis associated with cross-bridge cycling and with sarcoplasmic-reticulum calcium pumping, and these two contributions are approximately equal under tetanic, isometric, steady-state conditions. The contribution of the calcium flux across the electrochemical potential gradient at the sarcoplasmic-reticulum membrane was found to be small under all conditions examined, and can be neglected. Long-term fatigue and oxidative recovery effects are not included in this theory. Also not included is the so-called 'unexplained energy' presumably associated with reactions which have not yet been identified. Within these limitations our model defines clear quantitative interrelations between the activation, mechanics, and energetics in muscle, and permits rational estimates of the energy production to be calculated for arbitrary programs of muscular work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号