首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  6篇
  2004年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Carrageenan, the major cell wall carbohydrate of certain red algae, is variable in structure and gelling properties. Sequence types include gelling (kappa and iota) and nongelling (lambda) types in addition to precursors, often in hybrid molecules containing more than one precursor and/or sequence type. Molecular markers to subunits were needed to study carrageenan synthesis, cell wall organization, and the relationship between structure and function. Monoclonal antibodies were produced to carrageenan, and their specificities were determined by competitive enzyme immunoassay. Antibodies were identified with specificities related to kappa, iota, and lambda carrageenan. The patterns of immunofluorescence localization on Kappaphycus alvarezii = Eucheuma alvarezii var. tambalang (Doty) sections were distinctive for each antibody. The antibody to a kappa-related epitope labeled mature tissue strongly; antibodies to an iota-related epitope and a lambda-related epitope labeled weakly, consistent with the kappa-enriched carrageenan produced by this alga. Kappa-related epitopes were distributed throughout the wall and matrix, whereas iota-related epitopes were concentrated in the middle lamella. Lambda-related epitopes were localized primarily at the plant cuticle where kappa and iota antigens were lacking. An antibody appeared to be specific for a precursor of the gelling subunits because it showed maximal wall and intracellular labeling at the youngest developmental stage. All antibodies labeled intracellular inclusions in the transition zone between the epidermis and medulla during the development of medullary cells from the peripheral meristem in young branches. The results demonstrate the intracellular synthesis of epitopes related to all major carrageenan subunits and their differential extracellular distribution.  相似文献   
2.
An LC-MS/MS method for determination of the break down product of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) urea derivative, EDU, has been developed and validated for monitoring the residual coupling reagents. Results indicate that the method exhibits suitable specificity, sensitivity, precision, linearity and accuracy for quantification of residual EDU in the presence of meningococcal polysaccharide-diphtheria toxoid conjugate vaccine and other vaccine matrix compounds. The assay has been validated for a detection range of 10-100 ng/mL and then successfully transferred to quality control (QC) lab. This same method has also been applied to the determination of residual diaminohexane (DAH) in the presence of EDU. LC-MS/MS has proven to be useful as a quick and sensitive approach for simultaneous determination of multiple residual compounds in glycoconjugate vaccine samples.  相似文献   
3.
Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In mur1 RG-II a non-reducing terminal 2-O-methyl l-galactosyl residue and a 3,4-linked l-galactosyl residue replace the non-reducing terminal 2-O-methyl l-fucosyl residue and the 3,4-linked l-fucosyl residue, respectively, that are present in wild-type RG-II. Furthermore, we found that a terminal non-reducing l-galactosyl residue, rather than the previously reported d-galactosyl residue, is present on the 2-O-methyl xylose-containing side chain of RG-II in both wild type and mur1 plants. Approximately 95% of the RG-II from wild type and mur1 plants is solubilized as a high-molecular-weight (>100 kDa) complex, by treating walls with aqueous potassium phosphate. The molecular mass of RG-II in this complex was reduced to 5–10 kDa by treatment with endopolygalacturonase, providing additional evidence that RG-II is covalently linked to homogalacturonan. The results of this study provide additional information on the structure of RG-II and the role of this pectic polysaccharide in the plant cell wall.Abbreviations AIR Alcohol-insoluble residue - d-Gal d-Galactosyl - EPG Endopolygalacturonase - ESI–MS Electrospray ionization mass spectrometry - GC–MS Gas chromatography–mass spectrometry - 1H-NMR Proton nuclear magnetic resonance spectroscopy - l-Fuc l-Fucosyl - l-Gal l-Galactosyl - 2-O-MeFuc 2-O-Methyl l-fucosyl - 2-O-MeGal 2-O-Methyl l-galactosyl - 2-O-MeXyl 2-O-Methyl d-xylosyl - MWCO Molecular weight cut-off - RG-II Rhamnogalacturonan II - ppm Parts per million - RI Refractive index - SEC Size-exclusion chromatography - TFA Trifluoroacetic acid - WT Wild type  相似文献   
4.
Molecular markers for marine algal polysaccharides   总被引:1,自引:1,他引:0  
  相似文献   
5.
The ability of kappa (κ) and iota (ι) carrageenans to form gels is dependent upon the regular repeat of disaccharide units along the carbohydrate chain. Short, chemically- and enzymatically-purified fragments of κ and ι carrageenan were conjugated to fluorescein and used as specific hybridization probes for localization of κ and ι carrageenan gelling sequences within the cells walls and intercellular matrices of Kappaphycus alvarezii (Doty) Doty. The probes label cell walls and intercellular matrices under ionic conditions appropriate for gelation of κ and ι carrageenans. The distribution of κ and ι carrageenans in the matrix and cell walls of K. alvarezii was determined with respect to cell type (epidermis, cortex, medulla, and central axis) and age. The κ-probe labels the cell walls of all cell types except epidermal in both young and old tissues. In contrast, the ι-probe labels the cell walls of the epidermis in both young and old tissue and the cell walls of the thylles only in old tissue. Both probes label intercellular matrix material; however, ι-probe labelling is very much weaker than κ-probe labelling. The results indicate that FITC-conjugated carrageenan oligosaccharides are useful tools that provide information on gelling subunit distribution.  相似文献   
6.
The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the two hemicelluloses xyloglucan and glucuronoarabinoxylan, and structural glycoproteins. The cell walls of Arabidopsis leaves contain each of these components and no others that we could detect, and these cell walls are remarkable in that they are particularly rich in phosphate buffer-soluble polysaccharides (34% of the wall). The pectic polysaccharides of the purified cell walls consist of rhamnogalacturonan I (11%), rhamnogalacturonon II (8%), and homogalacturonan (23%). Xyloglucan (XG) accounts for 20% of the wall, and the oligosaccharide fragments generated from XG by endoglucanase consist of the typical subunits of other higher plant XGs. Glucuronoarabinoxylan (4%), cellulose (14%) and protein (14%) account for the remainder of the wall. Except for the phosphate buffer-soluble pectic polysaccharides, the polysaccharides of Arabidopsis leaf cell walls occur in proportions similar to those of other plants. The structure of the Arabidopsis cell-wall polysaccharides are typical of those of many other plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号