首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  2021年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1966年   1篇
  1965年   2篇
  1962年   2篇
  1961年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
2.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
3.
4.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
5.
6.
It has repeatedly been found that haemodynamic changes during hypoproteinaemia in the chronic phase of the nephrotic syndrome are different from those during hypoproteinaemia in the acute phase. In our series of patients, a decrease in the filtration fraction and relative hyperperfusion of the kidneys were associated with the presence of the nephrotic syndrome. No significant changes in renal haemodynamics were observed in patients with chronic glomerulonephritis without the nephrotic syndrome or in a group of healthy volunteers. The question of whether relative hyperperfusion of the kidneys in a repeatedly relapsing nephrotic syndrome can lead to the development of focal segmental glomerulosclerosis needs to be elucidated.  相似文献   
7.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
8.
Invited review: Intermittent hypoxia and respiratory plasticity.   总被引:12,自引:0,他引:12  
Intermittent hypoxia elicits long-term facilitation (LTF), a persistent augmentation (hours) of respiratory motor output. Considerable recent progress has been made toward an understanding of the mechanisms and manifestations of this potentially important model of respiratory plasticity. LTF is elicited by intermittent but not sustained hypoxia, indicating profound pattern sensitivity in its underlying mechanism. During intermittent hypoxia, episodic spinal serotonin receptor activation initiates cell signaling events, increasing spinal protein synthesis. One associated protein is brain-derived neurotrophic factor, a neurotrophin implicated in several forms of synaptic plasticity. Our working hypothesis is that increased brain-derived neurotrophic factor enhances glutamatergic synaptic currents in phrenic motoneurons, increasing their responsiveness to bulbospinal inspiratory inputs. LTF is heterogeneous among respiratory outputs, differs among experimental preparations, and is influenced by age, gender, and genetics. Furthermore, LTF is enhanced following chronic intermittent hypoxia, indicating a degree of metaplasticity. Although the physiological relevance of LTF remains unclear, it may reflect a general mechanism whereby intermittent serotonin receptor activation elicits respiratory plasticity, adapting system performance to the ever-changing requirements of life.  相似文献   
9.
10.
Summary Under the experimental conditions of this study no transfer of radiophosphorus occurred from one living plasmodium to another when a radioactive plasmodium ofPhysarum polycephalum and a non-radioactive plasmodium ofPhysarum gyrosum orFuligo septica were in intimate contact for 24 hours.This research constitutes a part of a program Experimental Approach to the Taxonomy of the Myxomycetes, supported by National Science Foundation Grant G-6382.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号