首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2011年   1篇
  2005年   1篇
  1980年   1篇
  1948年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Indirect effects of insect herbivory on leaf gas exchange in soybean   总被引:5,自引:0,他引:5  
Herbivory can affect plant carbon gain directly by removing photosynthetic leaf tissue and indirectly by inducing the production of costly defensive compounds or disrupting the movement of water and nutrients. The indirect effects of herbivory on carbon and water fluxes of soybean leaves were investigated using gas exchange, chlorophyll fluorescence and thermal imaging. Herbivory by Popillia japonica and Helicoverpa zea (Boddie) caused a 20–90% increase in transpiration from soybean leaflets without affecting carbon assimilation rates or photosynthetic efficiency (ΦPSII). Mechanical damage to interveinal tissue increased transpiration up to 150%. The spatial pattern of leaf temperature indicated that water loss occurred from injuries to the cuticle as well as from cut edges. A fluorescent tracer (sulforhodamine G) indicated that water evaporated from the apoplast approximately 100 µm away from the cut edges of damaged leaves. The rate of water loss from damaged leaves remained significantly higher than from control leaves for 6 d, during which time they lost 45% more water than control leaves (0.72 mol H2O per cm of damaged perimeter). Profligate water loss through the perimeter of damaged tissue indicates that herbivory may exacerbate water stress of soybeans under field conditions.  相似文献   
2.
The patterns of phylogenetic differentiation in the closelyrelated sea turtle families Toxochelyidae and Cheloniidae followedstrikingly different courses. In the Toxochelyidae there isa gradual increase in specialization toward a pelagic mode oflife with time. The phyletic picture is thus that of a shrub.In the Cheloniidae, by contrast, the geologically oldest representativesof the family are the most advanced, pelagic species, and theRecent species, except for Eretmochelys imbricata, are amongthe least specialized members of the family. There is good evidencethat the living species are the only cheloniids that have theirhind limbs modified as rudders, and the very close similaritybetween the limb skeletons of these species suggests that theyare more closely related to each other than any of them areto any earlier form. A similar case can be made for the earlyCaenozoic cheloniids. The phylogenetic pattern, therefore, suggestsrepeated episodes of pelagic specialization from a central,unspecialized stock, a pattern referred to as iterative evolution.  相似文献   
3.
4.
1. Plant defensive chemistry is predicted to have a more negative effect on generalist herbivores and their parasitoids than on specialist herbivores and their parasitoids. 2. This prediction was examined by comparing the effects of the wild parsnip (Pastinaca sativa L.) toxin, xanthotoxin, on a generalist herbivore–parasitoid association [the cabbage looper, Trichoplusia ni Hübner, and its polyembryonic parasitoid, Copidosoma floridanum (Ashmead)] and a specialist herbivore–parasitoid association [the parsnip webworm, Depressaria pastinacella (Duponchel), and its polyembryonic parasitoid, Copidosoma sosares (Walker)]. 3. Copidosoma floridanum brood sizes were smaller and experienced lower survivorship when reared in a host feeding on an artificial diet containing a low concentration of xanthotoxin. No T. ni hosts, parasitised or unparasitised, survived on a diet high in xanthotoxin. In contrast, C. sosares brood size and survivorship were unaffected by the presence of low levels of xanthotoxin in the host diet. Copidosoma sosares experienced reduced brood size and survivorship only when its host consumed a diet containing 15 times the level of xanthotoxin as the diet adversely affecting its congener. 4. The differences in response to xanthotoxin exhibited by C. floridanum and C. sosares are explained partly by a differential reduction in host quality and partly by differential exposure to xanthotoxin in host haemolymph. Unlike D. pastinacella, T. ni experienced reduced pupal weight and survivorship and prolonged developmental time on a low‐xanthotoxin diet. More xanthotoxin passed unmetabolised into the haemolymph of T. ni than into the haemolymph of D. pastinacella.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号