首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   28篇
  497篇
  2023年   1篇
  2022年   8篇
  2021年   8篇
  2020年   5篇
  2019年   12篇
  2018年   7篇
  2017年   5篇
  2016年   12篇
  2015年   16篇
  2014年   15篇
  2013年   39篇
  2012年   32篇
  2011年   40篇
  2010年   30篇
  2009年   33篇
  2008年   27篇
  2007年   28篇
  2006年   29篇
  2005年   29篇
  2004年   19篇
  2003年   23篇
  2002年   23篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
1.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   
2.
Transgenic rice plants (Oryza sativa cv. Nipponbare) carrying 1 or 2 copies of a rice homeobox gene, OSH1, under the control of the CaMV 35S promoter were generated. The transgene caused altered morphology of leaf, such as ligule-replacement and abnormal division of sclerenchyma cells. The phenotype of these leaves resembles that of maize leaf morphological mutant, Knotted 1, which is caused by duplication of the KN1 gene (Veit et al., 1990). The in situ hybridization analysis has revealed that the expression of endogenous OSH1 is mainly localized in developing vascular strands of stem. We have discussed the biological roles of OSH1 in rice based on these results.  相似文献   
3.
Carbonic anhydrase (CA) activity was detected in homogenatesfrom Anabaena variabilis ATCC 29413, M-2 and M-3, but not inthe suspension of the intact cells. Activity was higher in cellsgrown in ordinary air (low-CO2 cells) than in those grown inair enriched with 2–4% CO2 (high-CO2 cells). Fractionationby centrifugation indicated that the CA from A. variabilis ATCC29413 is soluble, whereas both soluble and insoluble forms existin A. variabilis M-2 and M-3. The addition of dithiothreitoland Mg2 $ greatly decreased the CA activity of A. variabilisATCC 29413. The specific activity of the CA from A. variabilis ATCC 29413was increased ca. 200 times by purification with ammonium sulfate,DEAE-Sephadex A-50 and Sephadex G-100. Major and minor CA peaksin Sephadex G-100 chromatography showed respective molecularweights of 48,000 and 25,000. The molecular weight of the CAdetermined by polyacrylamide disc gel electrophoresis was 42,000?5,000.The activity of CA was inhibited by ethoxyzolamide (I50=2.8?10-9M), acetazolamide (I50=2.5?10-7 M) and sulfanilamide (I50=2.9?10-6M). (Received January 5, 1984; Accepted April 26, 1984)  相似文献   
4.
5.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
6.
Contact-dependent growth inhibition is a mechanism of interbacterial competition mediated by delivery of the C-terminal toxin domain of CdiA protein (CdiA–CT) into neighboring bacteria. The CdiA–CT of enterohemorrhagic Escherichia coli EC869 (CdiA–CTEC869) cleaves the 3′-acceptor regions of specific tRNAs in a reaction that requires the translation factors Tu/Ts and GTP. Here, we show that CdiA–CTEC869 has an intrinsic ability to recognize a specific sequence in substrate tRNAs, and Tu:Ts complex promotes tRNA cleavage by CdiA–CTEC869. Uncharged and aminoacylated tRNAs (aa-tRNAs) were cleaved by CdiA–CTEC869 to the same extent in the presence of Tu/Ts, and the CdiA–CTEC869:Tu:Ts:tRNA(aa-tRNA) complex formed in the presence of GTP. CdiA–CTEC869 interacts with domain II of Tu, thereby preventing the 3′-moiety of tRNA to bind to Tu as in canonical Tu:GTP:aa-tRNA complexes. Superimposition of the Tu:GTP:aa-tRNA structure onto the CdiA–CTEC869:Tu structure suggests that the 3′-portion of tRNA relocates into the CdiA–CTEC869 active site, located on the opposite side to the CdiA–CTEC869 :Tu interface, for tRNA cleavage. Thus, CdiA–CTEC869 is recruited to Tu:GTP:Ts, and CdiA–CT:Tu:GTP:Ts recognizes substrate tRNAs and cleaves them. Tu:GTP:Ts serves as a reaction scaffold that increases the affinity of CdiA–CTEC869 for substrate tRNAs and induces a structural change of tRNAs for efficient cleavage by CdiA–CTEC869.  相似文献   
7.

Purpose of work  

To explore a novel glycolipid, we performed biochemical reactions using a recombinant α-glucosidase from Geobacillus sp. which shows excellent transglycosylation reaction to hydroxyl groups in a variety of compounds.  相似文献   
8.
Human saliva, which contains nitrite, is normally mixed with gastric juice, which contains ascorbic acid (AA). When saliva was mixed with an acidic buffer in the presence of 0.1 mM AA, rapid nitric oxide formation and oxygen uptake were observed. The oxygen uptake was due to the oxidation of nitric oxide, which was formed by AA-dependent reduction of nitrite under acidic conditions, by molecular oxygen. A salivary component SCN enhanced the nitric oxide formation and oxygen uptake by the AA/nitrite system. The oxygen uptake by the AA/nitrite/SCN system was also observed in an acidic buffer solution. These results suggest that oxygen is normally taken up in the stomach when saliva and gastric juice are mixed.  相似文献   
9.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   
10.
Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K+ uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K+ channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using 86radioactive rubidium ion (86Rb+) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号