首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  7篇
  2021年   3篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
The aim of this study was to analyze the performance of Acaena elongata colonized by arbuscular mycorrhizal fungi (AMF) to different phosphorus (P) concentrations, as a measure of AMF dependency. A. elongata, is a species from soils where P availability is limited, such as temperate forests. Our research questions were: 1) How do different P concentrations affect the AMF association in Acaena elongata, and 2) How does the AMF association influence A. elongata’s growth under different P concentrations? A. elongata’s growth, P content in plant tissue, AMF colonization and dependency were measured under four P concentrations: control (0 g P kg−1 ), low (0.05 g P kg−1 ), intermediate (0.2 g P kg−1 ) and high (2 g P kg−1 ) in different harvests. A complete randomized block design was applied. A. elongata’s growth was higher under -AMF in intermediate and high P concentrations, and the lowest growth corresponded to +AMF in the low and intermediate P concentration. We observed a negative effect on the root biomass under +AMF in intermediate P concentration, while the P concentration had a positive effect on the leaf area ratio. The AMF colonization in A. elongata decreased in the highest P concentration and it was favored under intermediate P concentration; while the low and the high concentrations generated a cost-benefit imbalance. Our results suggest that the performance of some plant species in soils with low P availability may not be favored by their association with AMF, but a synergy between AMF and intermediate P concentrations might drive A. elongata’s growth.  相似文献   
2.

Background

The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy.

Methodology/Principal Findings

We expressed the globular HA receptor binding domain, referred to here as HA63–286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA63–286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model.

Conclusions/Significance

Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy.  相似文献   
3.
4.
We aimed at characterizing the methylmercury (MeHg) exposure through fish consumption in two populations (common general and fishing-related population (FRP)) using a probabilistic health risk assessment in children, women of childbearing age, and adults in Mazatlán. The hazard quotients (HQs) were obtained from fish consumption, defined through a survey, and the levels of mercury in fishery products, obtained from published information. The average fish ingestion rate (IRfood) was higher in the FRP (167.85 g d?1) than in the general population (GP) (140.9 g d?1). However, HQs were significantly (p < 0.05) higher in the GP (ranging from 0.18 to 10.91) compared to the FRP (0.20 to 2.48); significant differences were also found among groups of both populations. Remarkably, children in both populations exhibited the highest proportions of risk, reaching up to 97% in GP. For all populations, fish consumption was the most important variable influencing MeHg exposure. Overall, for MeHg exposure, there is no safe level of fish consumption without risk, and actions should be taken to mitigate possible risk; further research with current data is needed to assess potential health risks associated with MeHg exposure, particularly in children.  相似文献   
5.
The hemagglutinin (HA) surface glycoprotein promotes influenza virus entry and is the key protective antigen in natural immunity and vaccines. The HA protein is a trimeric envelope glycoprotein consisting of a globular receptor-binding domain (HA-RBD) that is inserted into a membrane fusion-mediating stalk domain. Similar to other class I viral fusion proteins, the fusogenic stalk domain spontaneously refolds into its postfusion conformation when expressed in isolation, consistent with this domain being trapped in a metastable conformation. Using X-ray crystallography, we show that the influenza virus HA-RBD refolds spontaneously into its native, immunogenic structure even when expressed in an unglycosylated form in Escherichia coli. In the 2.10-Å structure of the HA-RBD, the receptor-binding pocket is intact and its conformational epitopes are preserved. Recombinant HA-RBD is immunogenic and protective in ferrets, and the protein also binds with specificity to sera from influenza virus-infected humans. Overall, the data provide a structural basis for the rapid production of influenza vaccines in E. coli. From an evolutionary standpoint, the ability of the HA-RBD to refold spontaneously into its native conformation suggests that influenza virus acquired this domain as an insertion into an ancestral membrane-fusion domain. The insertion of independently folding domains into fusogenic stalk domains may be a common feature of class I viral fusion proteins.The genetic drift of seasonal influenza viruses and the occasional emergence of pandemic strains represent a continuing and serious burden on human health. Pandemic influenza viruses arise at irregular intervals, can infect up to 50% or more of the population, and vary in disease severity. Most notably, the H1N1 Spanish influenza pandemic of 1918 killed an estimated 20 to 50 million people worldwide, and the 1957 H2N2 Asian flu and 1968 H3N2 Hong Kong flu pandemics killed between 0.5 and 1 million people in the United States alone (30). The ongoing danger of influenza was recently emphasized by the emergence of the novel H1N1 pandemic virus from Mexico in April of 2009. The urgent need to speed up vaccine production was highlighted by this outbreak because over 340,000 confirmed cases and 4,100 deaths had occurred worldwide during the 6 months that were necessary to produce a vaccine using current procedures (39).As the major surface antigen of influenza A viruses, the hemagglutinin (HA) envelope glycoprotein is the primary source of natural immunity and the key target in vaccination. However, changes in the antigenic sites of the HA protein due to antigenic drift result in lost or diminished immunity acquired from previous infection or vaccination (35). This necessitates the production of new vaccines against seasonal influenza viruses each year. The HA protein also plays a central role in the emergence of human pandemic influenza viruses. There are 16 known antigenic subtypes of HA proteins in influenza A viruses (H1 through H16), and a pandemic occurs when an influenza virus that has an HA protein to which most of the population lacks immunity acquires the ability to be efficiently transmitted from person to person.The HA protein has multiple roles in the virus life cycle, notably receptor binding and membrane fusion. The protein is synthesized as a single precursor protein, HA0, that trimerizes and becomes glycosylated in the endoplasmic reticulum as it traffics to the cell surface (33). The HA protein contains multiple disulfide bonds and is cleaved into a mature form consisting of two subunits, HA1 and HA2 (9, 18). HA2 and the N- and C-terminal portions of HA1 form a membrane-proximal stalk that mediates membrane fusion during viral entry (40). A receptor-binding domain (HA-RBD) forms the distal head of the molecule and is inserted into the HA1 subunit. During virus entry, the HA-RBD engages sialic acid-containing receptors on the surface of the host cell, and the virion is subsequently internalized by endocytosis (33). Structurally and functionally, the HA-RBD is a member of the lectin superfamily, and the specificity of the binding pocket contributes to the host range of influenza viruses. For example, α(2,6)-containing sialosides are typically preferred by the HA protein from human viruses and α(2,3) sialosides by the HA proteins from avian viruses (13, 28). Upon triggering by the low-pH environment of endosomes, the HA protein undergoes an irreversible conformational change (6, 40) during which the intact HA-RBDs dissociate from the stalk of the trimer (3, 14, 19, 21). This observation, together with the manner in which the lectin-like domain is inserted as a folded module into the full-length HA protein, led us to hypothesize that the HA-RBD is able to adopt its native structure in isolation. Proper folding of the isolated HA-RBD into its native immunogenic structure has important therapeutic implications because the domain contains all of the known HA antigenic epitopes responsible for antibody recognition (5), and producing a protein-based influenza vaccine composed of isolated HA-RBD would dramatically speed up vaccine development during the early stages of a pandemic.In a recently published report, a construct of the 2009 pandemic H1N1 HA protein that encompasses the HA-RBD, designated HA63-286-RBD, was expressed in Escherichia coli as inclusion bodies, refolded and purified, and used as a vaccine to produce immunity in ferrets (2). In this report, we show that this construct behaves as a stable, structured protein in solution, can be readily crystallized, and indeed adopts a structure that is virtually indistinguishable from that in the H1N1 HA protein ectodomain (41).  相似文献   
6.
7.
Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR. In all three cases, the RYR2 mobilizes less Ca2+ from the SR in an alternating manner, thereby generating an alternating profile of the Ca2+ transients. We used a new experimental approach, fluorescence local field optical mapping (FLOM), to record at the epicardial layer of an intact heart with subcellular resolution. In conjunction with a local cold finger, a series of images were recorded within an area where the local cooling induced a temperature gradient. Ca-Alts were larger in colder regions and occurred without changes in action potential duration. Analysis of the change in the enthalpy and Q10 of several kinetic processes defining intracellular Ca2+ dynamics indicated that the effects of temperature change on the relaxation of intracellular Ca2+ transients involved both passive and active mechanisms. The steep temperature dependency of Ca-Alts during tachycardia suggests Ca-Alts are generated by insufficient SERCA-mediated Ca2+ uptake into the SR. We found that Ca-Alts are heavily dependent on intra-SR Ca2+ and can be promoted through partial pharmacologic inhibition of SERCA2a. Finally, the FLOM experimental approach has the potential to help us understand how arrhythmogenesis correlates with the spatial distribution of metabolically impaired myocytes along the myocardium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号