首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   4篇
  国内免费   9篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   1篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2003年   1篇
  2000年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
Zea mays (Z. mays) is one of the main cereal crops in the world, and it′s by-products have exhibited medicinal properties to explore. This article intends to review the chemical compositions and pharmacological activities of by-products of Z. mays (corn silks, roots, bract, stems, bran, and leaves) which support the therapeutic potential in the treatment of different diseases, with emphasis on the natural occurring compounds and detailed pharmacological developments. Based on this review, 231 natural compounds are presented. Among them, flavonoids, terpenes, phenylpropanoids, and alkaloids are the most frequently reported. The by-products of Z. mays possess diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti-inflammatory, anti-cancer, plant protection activity, and other activities. This article reviewed the phytochemistry and pharmacological activities of Z. mays for comprehensive quality control and the safety and effectiveness to enhance future application.  相似文献   
2.
Dysregulation of autophagy is associated with the neurodegenerative processes in Alzheimer's disease (AD), yet it remains controversial whether autophagy is a cause or consequence of AD. We have previously expressed the full‐length human APP in Drosophila and established a fly AD model that exhibits multiple AD‐like symptoms. Here we report that depletion of CHIP effectively palliated APP‐induced pathological symptoms, including morphological, behavioral, and cognitive defects. Mechanistically, CHIP is required for APP‐induced autophagy dysfunction, which promotes Aβ production via increased expression of BACE and Psn. Our findings suggest that aberrant autophagy is not only a consequence of abnormal APP activity, but also contributes to dysregulated APP metabolism and subsequent AD pathogenesis.  相似文献   
3.
Most flower-visiting insects employ highly-evolved organs to feed themselves rapidly and efficiently on the floral nectar. A honey bee drives its segmented tongue (glossa) covered by dense hairs reciprocatingly to load nectar. A high-speed camera system ameliorated by a microscope revealed morphological changes in glossal surfaces during live honey bees’ nectar dipping and surface configurations through the stretching of postmortem honey bees’ glossae. Both the in vivo and postmortem observations reveal that shortening and lengthening of the glossal segments perform high concordance with the erection of glossal hairs, which aids in developing deformable gaps between rows of glossal hairs during nectar trapping. A model was proposed to evaluate the nectar-intake volume considering the experimentally-measured average erection angle and tongue elongation length during nectar feeding. The theoretical results fit the experimental data well and disclose that these two factors contribute to an augmentation of nectar-intake observably. We also theoretically present that the extendible and deformable glossae have advantages for the polylectic feeding behavior.  相似文献   
4.
How RNA sequences fold to specific tertiary structures is one of the key problems for understanding their dynamics and functions. Here, we study the folding process of an H-type RNA pseudoknot by performing a large-scale all-atom MD simulation and bias-exchange metadynamics. The folding free energy landscapes are obtained and several folding intermediates are identified. It is suggested that the folding occurs via multiple mechanisms, including a step-wise mechanism starting either from the first helix or the second, and a cooperative mechanism with both helices forming simultaneously. Despite of the multiple mechanism nature, the ensemble folding kinetics estimated from a Markov state model is single-exponential. It is also found that the correlation between folding and binding of metal ions is significant, and the bound ions mediate long-range interactions in the intermediate structures. Non-native interactions are found to be dominant in the unfolded state and also present in some intermediates, possibly hinder the folding process of the RNA.  相似文献   
5.
Saline stress is a major factor that limits crop yield. Nitric oxide (NO) is functional during plant growth, development, and defense responses. In the present study, the protective role of NO in alleviating saline stress in maize at the physiological and proteomic levels was examined. Our results showed that salt treatment quickly induced NO accumulation and addition of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) efficiently eliminated the inhibitory effect of salt on shoot growth and photosynthesis and inhibited salt-inducible H2O2 accumulation. These effects could be reversed by NO metabolic scavengers and inhibitors. Further proteomic and Western blotting analysis revealed that NO induced G-protein-associated protein accumulation and antioxidant enzymes activities, in addition to activation of defense proteins, energy metabolism, and cell structure/division in salt-treated maize seedlings. Controlling the G-protein status with G-protein activators or inhibitors also affected NO generation and root and stem growth in maize seedlings after saline stress. On the basis of these results, we propose that NO enhances salt tolerance in maize seedlings by enhancing antioxidant enzyme activities and controlling H2O2 levels, and these effects are accompanied by diverse downstream defense responses. During this process, G-protein signaling is an early event that works upstream of NO biogenesis.  相似文献   
6.
Chen J  Cheng T  Wang P  Liu W  Xiao J  Yang Y  Hu X  Jiang Z  Zhang S  Shi J 《Journal of Proteomics》2012,75(17):5226-5243
Salinity is a major abiotic stress that inhibits plant growth and development. Plants have evolved complex adaptive mechanisms that respond to salinity stress. However, an understanding of how plants respond to salinity stress is far from being complete. In particular, how plants survive salinity stress via alterations to their intercellular metabolic networks and defense systems is largely unknown. To delineate the responses of Nitraria sphaerocarpa cell suspensions to salinity, changes in their protein expression patterns were characterized by a comparative proteomic approach. Cells that had been treated with 150 mM NaCl for 1, 3, 5, 7, or 9 days developed several stress-related phenotypes, including those affecting morphology and biochemical activities. Of ~1100 proteins detected in 2-DE gel patterns, 130 proteins showed differences in abundance with more than 1.5-fold when cells were stressed by salinity. All but one of these proteins was identified by MS and database searching. The 129 spots contained 111 different proteins, including those involved in signal transduction, cell rescue/defense, cytoskeleton and cell cycle, protein folding and assembly, which were the most significantly affected. Taken together, our results provide a foundation to understand the mechanism of salinity response.  相似文献   
7.
8.
Overexpressed CEACAM6 in tumor tissues plays important roles in invasion, metastasis and anoikis resistance in a variety of human cancers. We recently reported that CEACAM6 expression is upregulated in Gastric cancer (GC) tissues and promoted GC metastasis. Here, we report that CEACAM6 promotes peritoneal metastases in vivo and is negatively correlated with E-cadherin expression in GC tissues. Overexpressed CEACAM6 induced epithelial-mesenchymal transition (EMT) in GC, as measured by increases in the EMT markers N-cadherin, Vimentin and Slug while E-cadherin expression was decreased in CEACAM6-overexpressing GC cells; opposing results were observed in CEACAM6-silenced cells. Furthermore, E-cadherin expression was negatively correlated with depth of tumor invasion, lymph node metastasis and TNM stage in GC tissues. Additionally, CEACAM6 elevated matrix metalloproteinase-9 (MMP-9) activity in GC, and anti-MMP-9 antibody could reverse the increasing invasion and migration induced by CEACAM6. CEACAM6 also increased the levels of phosphorylated AKT, which is involved in the progression of a variety of human tumors. We further observed that LY294002, a PI3K inhibitor, could reverse CEACAM6-induced EMT via mesenchymal-epithelial transition. These findings suggest that CEACAM6 enhances invasion and metastasis in GC by promoting EMT via the PI3K/AKT signaling pathway.  相似文献   
9.
Znf45l, containing classical C2H2 domains, is a novel member of Zinc finger proteins in zebrafish. In vertebrates, TGF-β signaling plays a critical role in hematopoiesis. Here, we showed that Znf45l is expressed both maternally and zygotically throughout early development. Znf45l-depleted Zebrafish embryos display shorter tails and necrosis with reduced expression of hematopoietic maker genes. Furthermore, we revealed that znf45l locates downstream of TGF-β ligands and maintains normal level of TGF-β receptor type II phosphorylation. In brief, our results indicate that znf45l affects initial hematopoietic development through regulation of TGF-β signaling. [BMB Reports 2014; 47(1): 21-26]  相似文献   
10.
杨阳  窦艳星  王云强  安韶山 《生态学报》2022,42(20):8152-8168
黄土高原植被恢复状况制约生态系统服务的提升,本研究依托中国科学院水利部水土保持研究所安塞国家科学野外观测站的基础土壤、植被、气象和水文等数据,在黄土丘陵沟壑区选取纸坊沟和坊塌2个典型小流域,通过购买1998、2008和2018年遥感影像,采用InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)模型对生态服务(碳储量、土壤保持量、生境质量和产水量)进行评估,探究植被恢复过程中生态系统服务的协同效应和权衡关系。通过对比得知:随着植被的恢复,坊塌和纸坊沟各生态服务(碳储量、土壤保持量、生境质量和产水量)均得到了大幅度的提升,其中2008—2018年增加幅度较小,而1998—2008年增加幅度较大,主要原因在于该阶段(1998—2008年)是退耕还林还草的初始10年,林地及草地面积增长较多,而后10年为退耕的延续阶段,退耕面积增长减缓。从1998—2018年,受自然因素和人为因素的影响,坊塌和纸坊沟流域生态系统服务表现出协同和权衡关系。对于坊塌流域,2008年生态系统服务主要表现为协同关系,1998、2018年以权衡关...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号