首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  1987年   1篇
排序方式: 共有7条查询结果,搜索用时 343 毫秒
1
1.
Summary At pH 4.0, >10–7 m nigericin was found capable of conducting net charge transfer across bimolecular lecithin membranes, with a stoichiometry of three uncharged ionophore moieties per cation. At neutral or alkaline pH, nigericin catalyzed the transfer of net charge through dimer forms. In agreement with these results, quantitative analysis of nigericin-potassium complexes formed at pH 4.0 showed a 31 ratio, and a 21 ratio at neutral or alkaline pH. A 11 stoichiometry was observed when the ionophore complex was not transferred from methanol-water to chloroform. Moreover,1H-NMR spectra of nigericin-cation complexes formed at pH 4.0, displayed clear-cut chemical shift variations different to those observed at neutral or alkaline pH. Thus, it is apparent that acid pH causes a transition from dimeric to trimeric forms of nigericin-cation complexes. The membrane conductance increased up to ten times when negatively charged phosphatidyl glycerol was used, while the conductance decreased in positively charged cetylpyridinium containing membranes at pH 4.0. These results suggest that the nigericin-K+ oligomeric complex is positively charged. In this respect, pK a values around 8.0 were obtained for the nigericin carboxylate group in media of different dielectric constant, indicating that this chemical group is undissociated under these conditions. Moreover, the values for the complex formation constants as well as the G values calculated for the dimers and trimers indicated that such ionophore cation oligomeric complexes are thermodynamically stable.  相似文献   
2.
3.
The prevalence and associated risk factors of Toxocara vitulorum infection in buffalo and cattle calves was studied in 3 provinces in central Cambodia. Fecal samples were collected from 517 calves between the age of 1-15 weeks and processed for nematode egg counts by a modified McMaster method. A total of 64 calves were found to excrete T. vitulorum eggs in their feces (12.4%; 95% exact CI: 9.7-15.5). The mean fecal egg count was 2,798 EPG (SD=16,351; range=0-224,400). A multivariable generalized linear mixed model showed higher odds of T. vitulorum infection for buffalo versus cattle, for animals aged 4-8 weeks versus younger and older ones, and for animals with strongyle infection. There was no association with fecal consistency. Farmers should be aware of the potential impact of T. vitulorum, and treat their calves at the age of 2-3 weeks with anthelmintics such as benzimidazoles or pyrantel.  相似文献   
4.
Growing evidence indicates that kinases are central to the regulation of endocytic pathways. Previously, we identified p21‐activated kinase 1 (Pak1) as the first specific regulator of clathrin‐ and caveolae‐independent endocytosis used by the interleukin 2 receptor subunit (IL‐2R). Here, we address the mechanism by which Pak1 regulates IL‐2Rβ endocytosis. First, we show that Pak1 phosphorylates an activator of actin polymerization, cortactin, on its serine residues 405 and 418. Consistently, we observe a specific inhibition of IL‐2Rβ endocytosis when cells overexpress a cortactin, wherein these serine residues have been mutated. In addition, we show that the actin polymerization enhancer, neuronal Wiskott–Aldrich syndrome protein (N‐WASP), is involved in IL‐2Rβ endocytosis. Strikingly, we find that Pak1 phosphorylation of cortactin on serine residues 405 and 418 increases its association with N‐WASP. Thus, Pak1, by controlling the interaction between cortactin and N‐WASP, could regulate the polymerization of actin during clathrin‐independent endocytosis.  相似文献   
5.
Bacterial plasmids play important roles in the metabolism, pathogenesis and bacterial evolution and are highly versatile biotechnological tools. Stable inheritance of plasmids depends on their autonomous replication and efficient partition to daughter cells at cell division. Active partition systems have not been identified for high-copy number plasmids, and it has been generally believed that they are partitioned randomly at cell division. Nevertheless, direct evidence for the cellular location of replicating and nonreplicating plasmids, and the partition mechanism has been lacking. We used as model pJHCMW1, a plasmid isolated from Klebsiella pneumoniae that includes two β-lactamase and two aminoglycoside resistance genes. Here we report that individual ColE1-type plasmid molecules are mobile and tend to be excluded from the nucleoid, mainly localizing at the cell poles but occasionally moving between poles along the long axis of the cell. As a consequence, at the moment of cell division, most plasmid molecules are located at the poles, resulting in efficient random partition to the daughter cells. Complete replication of individual molecules occurred stochastically and independently in the nucleoid-free space throughout the cell cycle, with a constant probability of initiation per plasmid.  相似文献   
6.
Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.  相似文献   
7.
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250?000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E.?coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E.?coli using regulated asRNA expression.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号