首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   14篇
  176篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   14篇
  2011年   14篇
  2010年   9篇
  2009年   5篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   7篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1965年   1篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
We studied the relative efficacy of polyamines to facilitate the binding of estrogen receptor to poly(dA-dC).poly(dG-dT). In the absence of polyamines, 1,400 micrograms/ml of this polynucleotide eluted 50% of bound estrogen receptor from DNA-cellulose. In contrast, 50% estrogen receptor was eluted by 65 micrograms/ml of poly(dA-dC).poly(dG-dT) complexed with 150 microM spermidine. Putrescine and spermine also enhanced the ability of poly(dA-dC).poly(dG-dT) to elute estrogen receptor, but the magnitude of the effect was not as high as that of spermidine. Control experiments with calf thymus DNA and poly(dA-dT).poly(dA-dT) showed 6- and 3-fold increase, respectively in their affinity for estrogen receptor in the presence of spermidine. The dramatic increase in the affinity of poly(dA-dC).poly(dG-dT) for estrogen receptor in the presence of polyamines might be a result of the conversion of the polynucleotide to the left-handed Z-DNA form. These results show that polyamines are capable of participating in estrogenic regulation of gene expression by altering the affinity of the receptor for specific DNA sequences.  相似文献   
2.
Cell signaling and heat shock protein expression   总被引:5,自引:0,他引:5  
Exposure of cells and organs to heat shock is associated with numerous changes in various cellular metabolic parameters and overexpression of proteins collectively known as heat shock proteins (HSP). In this communication we review the cell-signaling events that are altered in response to heat shock as they relate to the subsequent induction of HSP 70 kd (HSP-70) expression. We also review the mechanisms by which HSP-70 is involved in conferring cytoprotective effects. The possibility of altering HSP expression through manipulations of the cell-signal process has clinical importance.The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of the Army or Department of Defense.  相似文献   
3.
Aromatization of androgens by human breast cancer.   总被引:8,自引:0,他引:8  
The metabolism of dehydroepiandrosterone and testosterone by human mammary tumor was investigated. Estrogen synthesis from dehydroepiandrosterone was observed in 9 of 10 estrogen-receptor-negative tumors and only in 2 of 8 receptor-positive tumors (p less than 0.025). Conversion of testosterone to estrogens was observed in 7 of 8 receptor-negative and 2 of 7 receptor-positive tumors. Tumors which are capable of transforming dehydroepiandrosterone to estrogens were also able to aromatize testosterone suggesting that the presence of the aromatase enzyme is inherent to certain tumor cells. No estrogen formation was detected by the mitochondrial-microsomal fraction of normal breast cells while fractions from both fat cell and tumor cell showed estrogen synthesis. Estrogen formation by tumor cell fraction ranged from 5 to 190 times that observed for fat cells. The physiological significance of these results in the neoplastic tissue and its relationship to hormone dependence are discussed.  相似文献   
4.
The Warburg effect is an abnormal glycolysis response that is associated with cancer cells. Here we present evidence that metabolic changes resembling the Warburg effect are induced by a nonmammalian virus. When shrimp were infected with white spot syndrome virus (WSSV), changes were induced in several metabolic pathways related to the mitochondria. At the viral genome replication stage (12 h postinfection [hpi]), glucose consumption and plasma lactate concentration were both increased in WSSV-infected shrimp, and the key enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PDH), showed increased activity. We also found that at 12 hpi there was no alteration in the ADP/ATP ratio and that oxidative stress was lower than that in uninfected controls. All of these results are characteristic of the Warburg effect as it is present in mammals. There was also a significant decrease in triglyceride concentration starting at 12 hpi. At the late stage of the infection cycle (24 hpi), hemocytes of WSSV-infected shrimp showed several changes associated with cell death. These included the induction of mitochondrial membrane permeabilization (MMP), increased oxidative stress, decreased glucose consumption, and disrupted energy production. A previous study showed that WSSV infection led to upregulation of the voltage-dependent anion channel (VDAC), which is known to be involved in both the Warburg effect and MMP. Here we show that double-stranded RNA (dsRNA) silencing of the VDAC reduces WSSV-induced mortality and virion copy number. For these results, we hypothesize a model depicting the metabolic changes in host cells at the early and late stages of WSSV infection.  相似文献   
5.
Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53 ?/? of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2–8 Gy 60Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53+/+) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.  相似文献   
6.
Plasmonics - The effects of surface plasmon (SP) coupling with the excitation radiating dipole on the behaviors of the whispering-gallery resonance (WGR) modes in a hexagonal GaN nanowire cavity...  相似文献   
7.
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.  相似文献   
8.
H+-translocating pyrophosphatase (H+-PPase, EC 3.6.1.1) plays an important role in acidifying vacuoles by transporting protons across membranes at the expense of pyrophosphate (PPi) hydrolysis. Vigna radiata H+-PPase (VrH+-PPase) contains 16 transmembrane helices (TMs). The hydrophobicity of TM3 is relatively lower than that of most other TMs, and the amino acids in this TM are highly conserved in plants. Furthermore, TM5 and -6, which are the core TMs involving in H+-PPase functions, are near TM3. It is thus proposed that TM3 is associated with H+-PPase activity. To address this possibility, site-directed mutagenesis was applied in this investigation to determine the role of TM3 in VrH+-PPase. Upon alanine/serine substitution, T138 and S142, whose side chains face toward the center TMs, were found to be involved in efficient proton transport. G149/S153 and G160/A164 pairs at the crucial termini of the two GxxxG-like motifs are indispensable in maintaining enzymatic activities and conformational stability. Moreover, stability in the vicinity surrounding G149 is pivotal for efficient expression. S153, M161 and A164 are critical for the K+-mediated stimulation of H+-PPase. Taken together, our results demonstrate that TM3 plays essential roles in PPi hydrolysis, proton transport, expression, and K+ stimulation of H+-PPase.  相似文献   
9.

Background

Our previous research demonstrated that one subcutaneous injection of 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) 24 hours (h) before irradiation (8.75 Gy) increased mouse survival by 75%. However, the protective mechanism of 17-DMAG is currently unknown. The present study aimed to investigate whether oral administration of 17-DMAG was also radioprotective and the potential role it may play in radioprotection.

Results

A single dose of orally pre-administered (24, 48, or 72 h) 17-DMAG (10 mg/kg) increased irradiated mouse survival, reduced body weight loss, improved water consumption, and decreased facial dropsy, whereas orally post-administered 17-DMAG failed. Additional oral doses of pre-treatment did not improve 30-day survival. The protective effect of multiple pre-administrations (2?3 times) of 17-DMAG at 10 mg/kg was equal to the outcome of a single pre-treatment. In 17-DMAG-pretreated mice, attenuation of bone marrow aplasia in femurs 30 days after irradiation with recovered expressions of cluster of differentiation 34, 44 (CD34, CD44), and survivin in bone marrow cells were observed. 17-DMAG also elevated serum granulocyte-colony stimulating factor (G-CSF), decreased serum fms-related tyrosine kinase 3 ligand, and reduced white blood cell depletion. 17-DMAG ameliorated small intestinal histological damage, promoted recovery of villus heights and intestinal crypts including stem cells, where increased leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) was found 30 days after irradiation.

Conclusions

17-DMAG is a potential radioprotectant for bone marrow and small intestine that results in survival improvement.
  相似文献   
10.
Plasmonics - Surface plasmon (SP) coupling behaviors of an InGaN/GaN quantum well (QW) with surface plasmon polariton (SPP) induced on a smooth Ag-film/GaN interface and localized surface plasmon...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号