首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
中国森林害虫化学防治研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来我国林业有害生物呈频发重发态势,严重危害林业生态安全。化学防治是目前森林害虫综合治理体系中不可或缺的措施之一。本文基于我国森林害虫发生特点,详实阐述森林害虫化学防治中烟雾防治、注干防治、昆虫生长调节剂防治和行为化学防治的作用、应用技术和存在的问题,并结合化学防治现阶段存在的问题,探讨了森林害虫化学防治未来发展方向,为我国森林害虫化学防治的研发和应用提供参考。  相似文献   
2.
Wang  Man-Man  Groenewald  Marizeth  Wu  Feng  Guo  Yun-Tong  Wang  Qi-Ming  Boekhout  Teun 《Antonie van Leeuwenhoek》2021,114(5):553-559

The six synonyms currently accepted under Saccharomycodes ludwigii were investigated for by phenotypic properties, however, the sequence diversity of the rRNA and protein coding genes have not yet been determined. Nine strains including the type strains of synonyms of S. ludwigii deposited in the CBS yeast collection, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, were analyzed using a multi-locus sequence analysis (MLSA) approach that included sequences of 18S ribosomal RNA (rRNA), the D1/D2 domains of the 26S rRNA, the ITS region (including the 5.8S rRNA) and fragments of genes encoding the largest subunit of the RNA polymerase II (RPB1 and RPB2) and translation elongation factor 1-α (TEF1). Our results showed that the nine strains have identical D1/D2, 18S and RPB2 sequences and similar ITS, RPB1 and TEF1 sequences, which indicated that they are conspecific. In addition, a novel species of Saccharomycodes, S. pseudoludwigii sp. nov. (type CGMCC 2.4526 T) that was isolated from fruit and tree bark in China, is proposed. The MycoBank number of this new species is MB 811,650.

  相似文献   
3.
在对上海市树附生藻类的调查中,发现了我国一气生绿藻新纪录属——细链藻属Leptosira Borzi 1883。对该属及该属的一个新纪录种的主要形态学特征及生境特征进行了详细描述。  相似文献   
4.
Previously, VpPR-10.1 was isolated and characterized from a cDNA library of a fungus-resistant accession of Chinese wild grape (Vitis pseudoreticulata). We found that expression of VpPR-10.1 is affected by the fungal pathogen Erysiphe necator. To investigate the biochemical basis of the nuclease activity of VpPR-10.1 and its role in antifungal resistance, we generated recombinant VpPR-10.1 as well as site-directed mutations targeting three conserved amino acid residues among plant PR-10 s: Lys55, Glu149, and Tyr151. We showed that wild-type recombinant VpPR-10.1 exhibits both RNase and DNase activities. Mutant VpPR10.1-Y151H essentially retained all these activities. In contrast, VpPR10.1-K55N, where Lys55 in the P-loop region is mutated to Asn, and VpPR10.1-E149G, where Glu149 is mutated to Gly, lost their nuclease activity, indicating that both residues play a critical role in catalyzing RNA and DNA degradation. Furthermore, VpPR10.1 and VpPR10.1-Y151H inhibited the growth of the cultured fungal pathogen Alternaria alternate. Through transient expression in grapevine, we also demonstrated that VpPR10.1-K55N and VpPR10.1-E149G compromised resistance to E. necator. Finally, we further found that VpPR-10.1 can lead to programmed cell death and DNA degradation when incubated with tobacco BY-2 suspension cells. We show here that Lys55 and Glu149, but not Tyr151, are required for the RNase, DNase and antifungal activities of VpPR-10.1. The strong correlation between the level of VpPR-10.1 nuclease activity and its antifungal property indicates that the former is the biochemical basis for the latter. Taken together, our experiments revealed that VpPR-10.1 is critical in mediating fungal resistance in grape, potentially playing a dual role by degrading pathogen RNA and inducing programmed death of host cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号