首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2024年   1篇
  2022年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2006年   2篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 640 毫秒
1
1.
Sheng KH  Yao YC  Chuang SS  Wu H  Wu TF 《Proteomics》2006,6(3):1058-1065
To better understand the carcinogenesis of bladder cancer in Taiwan, we utilized the proteomic approach to search for potential biomarkers of transitional cell carcinoma (TCC). Analysis by 2-DE and MS/MS indicated that seven proteins are down-regulated and three proteins up-regulated in grade III samples as compared with those of grade II. Of these deregulated proteins, fatty acid binding proteins, annexin V, heat-shock protein 27, and lactate dehydrogenase have been shown to be associated with bladder cancer. Our studies also found altered expression of a group of proteins that have not been documented previously in bladder cancer, including annexin I, 15-hydroxyprostaglandin dehydrogenase, galectin-1, lysophospholipase and mitochondrial short-chain enoyl-coenzyme A hydratase 1 precursor. These results illustrate a pattern of differential protein expression between low- and high-grade tumors and it may be utilized as the molecular fingerprinting of a subset of bladder cancers. In addition, the present study provides a valuable resource in the study of pathological mechanisms in cancers of urothelial origin. The immunohistochemical staining of grade II and III TCC samples with antiserum to annexin I protein was utilized to confirm that the annexin I protein is up-regulated in grade III TCC.  相似文献   
2.
High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.  相似文献   
3.
Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) is caused by mutations in Valosin-containing protein (VCP), a hexameric AAA ATPase that participates in a variety of cellular processes such as protein degradation, organelle biogenesis, and cell-cycle regulation. To understand how VCP mutations cause IBMPFD, we have established a Drosophila model by overexpressing TER94 (the sole Drosophila VCP ortholog) carrying mutations analogous to those implicated in IBMPFD. Expression of these TER94 mutants in muscle and nervous systems causes tissue degeneration, recapitulating the pathogenic phenotypes in IBMPFD patients. TER94-induced neurodegenerative defects are enhanced by elevated expression of wild-type TER94, suggesting that the pathogenic alleles are dominant active mutations. This conclusion is further supported by the observation that TER94-induced neurodegenerative defects require the formation of hexamer complex, a prerequisite for a functional AAA ATPase. Surprisingly, while disruptions of the ubiquitin-proteasome system (UPS) and the ER-associated degradation (ERAD) have been implicated as causes for VCP-induced tissue degeneration, these processes are not significantly affected in our fly model. Instead, the neurodegenerative defect of TER94 mutants seems sensitive to the level of cellular ATP. We show that increasing cellular ATP by independent mechanisms could suppress the phenotypes of TER94 mutants. Conversely, decreasing cellular ATP would enhance the TER94 mutant phenotypes. Taken together, our analyses have defined the nature of IBMPFD-causing VCP mutations and made an unexpected link between cellular ATP level and IBMPFD pathogenesis.  相似文献   
4.
Physicochemical properties of native and dilute acid pretreated (0.6% H2SO4, 10 min, and either 170°C or 180°C) poplar were investigated before and during simultaneous saccharification and fermentation (SSF). SSF duration was 5 days and employed Trichoderma reesei cellulases and Saccharomyces cerevisiae fermentation. Chemical composition (glucan, xylan, lignin), enzyme-accessible surface area (based on solute exclusion), crystallinity index, particle size distribution, particle shape, and enzyme adsorption (cellulase, β-glucosidase) were compared to cellulose conversion. Cellulose conversion varied from 8% for native poplar to 78% for the 180°C-pretreated poplar. The physicochemical properties of native poplar changed little during SSF. In contrast, the physicochemical properties of the 180°C-pretreated feedstock changed markedly. Enzyme-accessible surface area and β-glucosidase adsorption increased by 83% and 65%, respectively, as cellulose was removed from the feedstock. Crystallinity index and particle size (large fraction) decreased by 65% and 93%, respectively. Cellulase adsorption per unit weight increased initially (+45%) followed by a slight decrease (−13%). The same trends were observed, although to a lesser extent, for 170°C-pretreated feedstock.  相似文献   
5.
Wu H  Pan CL  Yao YC  Chang SS  Li SL  Wu TF 《Proteomics》2006,6(3):826-835
Antrodia camphorata (niu-chang-chih) is a fungus native to Taiwan that is believed to be effective in preventing diseases. This study demonstrates that 0.2-2% v/v ethanol extracts of A. camphorata cultivated by solid-state fermentation (SACE) can effectively impede the proliferation of human non-small cell lung carcinoma A549 cells but not primary human fetal lung fibroblast MRC-5. The results of apoptotic analyses implicate that SACE might trigger the apoptosis in the A549 cells by inducing endoplasmic reticulum stress. Two-dimensional gel maps of non-treated and treated A549 cells were compared using PDQUEST analytical software to discover five statistically significant twofold or above-twofold differentially-expressed protein spots. The five protein spots that were significantly de-regulated were chosen for subsequent identification by high performance liquid chromatography electro-spray tandem mass spectrometry. The five proteins were later identified as human galectin-1, human eukaryotic translation initiation factor 5A, human Rho GDP dissociation inhibitor alpha, human calcium-dependent protease small subunit and human annexin V. All five proteins were confirmed to be down-regulated by Western blotting. The analytical results of this study help to provide insight into the effect of SACE on the gene expression of the tumor cells.  相似文献   
6.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   
7.

Background

Pin1 promotes oncogenesis by regulating multiple oncogenic signaling. In this study, we investigated the involvement of Pin1 in tumor progression and in the prognosis of human esophageal squamous cell carcinoma (ESCC).

Results

We observed that proliferation, clonogenicity and tumorigenesis of CE81T cells were inhibited by Pin1 knockdown. We next analyzed Pin1 expression in clinical ESCC specimens. When compared to the corresponding non-tumor part, Pin1 protein and mRNA levels in tumor part were higher in 84% and 62% patients, respectively. By immunohistochemistry, we identified that high Pin1 expression was associated with higher primary tumor stage (p = 0.035), higher overall cancer stage (p = 0.047) and poor overall survival (p < 0.001). Furthermore, the association between expression of Pin1 and levels of β-catenin and cyclin D in cell line and clinical specimens was evaluated. β-catenin and cyclin D1 were decreased in CE81T cells with Pin1 knockdown. Cyclin D1 level correlated with Pin1 expression in clinical ESCC specimens.

Conclusions

Pin1 upregulation was associated with advanced stage and poor prognosis of ESCC. Pin1 knockdown inhibited aggressiveness of ESCC cells. β-catenin and cyclin D1 were positively regulated by Pin1. These results indicated that targeting Pin1 pathway could represent a potential modality for treating ESCC.  相似文献   
8.
Using 4-methylumbelliferyl-β-D-N,N′,N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5), and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters K m and kcat were 245 µM and 10.31 min−1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号