全文获取类型
收费全文 | 1651篇 |
免费 | 62篇 |
国内免费 | 2篇 |
专业分类
1715篇 |
出版年
2024年 | 2篇 |
2023年 | 4篇 |
2022年 | 7篇 |
2021年 | 14篇 |
2020年 | 10篇 |
2019年 | 20篇 |
2018年 | 20篇 |
2017年 | 27篇 |
2016年 | 30篇 |
2015年 | 57篇 |
2014年 | 52篇 |
2013年 | 127篇 |
2012年 | 117篇 |
2011年 | 125篇 |
2010年 | 63篇 |
2009年 | 69篇 |
2008年 | 114篇 |
2007年 | 101篇 |
2006年 | 101篇 |
2005年 | 119篇 |
2004年 | 127篇 |
2003年 | 97篇 |
2002年 | 101篇 |
2001年 | 22篇 |
2000年 | 9篇 |
1999年 | 14篇 |
1998年 | 15篇 |
1997年 | 11篇 |
1996年 | 14篇 |
1995年 | 13篇 |
1994年 | 14篇 |
1993年 | 6篇 |
1992年 | 5篇 |
1991年 | 7篇 |
1990年 | 7篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 6篇 |
1986年 | 5篇 |
1985年 | 4篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1982年 | 8篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1978年 | 7篇 |
1977年 | 2篇 |
1976年 | 4篇 |
1973年 | 3篇 |
1954年 | 3篇 |
排序方式: 共有1715条查询结果,搜索用时 15 毫秒
1.
Hirayama Y Yamada T Oya Y Ito M Kato M Imaichi R 《Development genes and evolution》2007,217(5):363-372
STM (RaSTM) and YAB2 (RaYAB2) homologues were isolated from Ruscus aculeatus (Asparagaceae, monocots), and their expressions were analyzed by real-time polymerase chain reaction (PCR) to assess hypotheses on the evolutionary origin of the phylloclade in the Asparagaceae. In young shoot buds, RaSTM is expressed in the shoot apex, while RaYAB2 is expressed in the scale leaf subtending the shoot bud. This expression pattern is shared by other angiosperms, suggesting that the expression patterns of RaSTM and RaYAB2 are useful as molecular markers to identify the shoot and leaf, respectively. RaSTM and RaYAB2 are expressed concomitantly in phylloclade primordia. These results suggest that the phylloclade is not homologous to either the shoot or leaf, but that it has a double organ identity. 相似文献
2.
Hidetaka Kosako Yukiko Gotoh Eisuke Nishida 《Development, growth & differentiation》1996,38(6):577-582
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos. 相似文献
3.
Summary Examination was made of the structure and assembly of the cortical microtubule (MT) cytoskeleton in the coenocytic green algaBoodlea coacta (Dickie) Murray et De Toni by immunofluorescence microscopy. Cortical MTs inBoodlea protoplasts are arranged randomly but some show a meridional arrangement within 6 h after protoplast formation. At 6–9 h such MTs become highly concentrated and parallel to each other in certain areas. At 12 h the concentration is uniformly high throughout the cell, indicating the completion of high density meridional arrangement of cortical MTs. Cortical MTs exhibiting a high density, meridional arrangement show characteristic disassembly by treatment with 10 M amiprophos-methyl (APM) or cold treatment (0 °C). Disassembly occurs by each MT unit at positions skipping 30–40 m in the transverse direction, and neighboring MTs subsequently disassemble to form MT groups. Each group becomes slender and then disappears completely within the following 24 h. The meridional arrangement of cortical MTs is disrupted by N-ethylmaleimide (NEM) accompanied by a remarkable reduction in density. The remaining MTs form groups at 30–40 m intervals from each other, as also occurs with drug or cold treatment, but disruption and density return to normal levels following removal of NEM. It appears that there are meridionally oriented channels, anchor-rich and anchor-poor, in the plasma membrane. The channels could be distributed alternately and anchors could be deposited in a cross-linking manner with cortical MTs to form a stable cortical MT-cytoskeleton. MTs comprising the cortical MT cytoskeleton could be oriented by meridionally oriented channels of anchors which are distributed following establishment of cell polarity.Abbreviations APM
amiprophos-methyl
- MT
microtubule
- MTOC
microtubule organizing center
- NEM
N-ethylrnaleimide 相似文献
4.
Masakazu Takagi Hideyuki Tamaki Yukiko Miyamoto Roberta Leonardi Satoshi Hanada Suzanne Jackowski Shigeru Chohnan 《Journal of bacteriology》2010,192(1):233-241
Pantothenate kinase (CoaA) catalyzes the first step of the coenzyme A (CoA) biosynthetic pathway and controls the intracellular concentrations of CoA through feedback inhibition in bacteria. An alternative enzyme found in archaea, pantoate kinase, is missing in the order Thermoplasmatales. The PTO0232 gene from Picrophilus torridus, a thermoacidophilic euryarchaeon, is shown to be a distant homologue of the prokaryotic type I CoaA. The cloned gene clearly complements the poor growth of the temperature-sensitive Escherichia coli CoaA mutant strain ts9, and the recombinant protein expressed in E. coli cells transfers phosphate to pantothenate at pH 5 and 55°C. In contrast to E. coli CoaA, the P. torridus enzyme is refractory to feedback regulation by CoA, indicating that in P. torridus cells the CoA levels are not regulated by the CoaA step. These data suggest the existence of two subtypes within the class of prokaryotic type I CoaAs.Coenzyme A (CoA) is an essential cofactor synthesized from pantothenate (vitamin B5), cysteine, and ATP (1, 20, 30). The thiol group derived from the cysteine moiety in a CoA molecule forms a thioester bond, which is a high-energy bond, with carboxylates including fatty acids. The resulting compounds are called acyl-CoAs (CoA thioesters) and function as the major acyl group carriers in numerous metabolic and energy-yielding pathways. Since it is thought that the pantetheine moiety in CoA existed when life first came about on Earth (25) and at present, a CoA, acyl-CoA, or 4′-phosphopantethein moiety that is common to CoA and acyl carrier proteins is utilized by about 4% of all enzymes as a substrate (6), these compounds are thought to play a crucial role in the earliest metabolic system.Bacteria, fungi, and plants can produce pantothenate, which is the starting material of CoA biosynthesis, although animals must take it from their diet (41). The canonical CoA biosynthetic pathway consists of five enzymatic steps: i.e., pantothenate kinase (CoaA in prokaryotes and PanK in eukaryotes; EC 2.7.1.33), phosphopantothenoylcysteine synthetase (CoaB; EC 6.3.2.5), phosphopantothenoylcysteine decarboxylase (CoaC: EC 4.1.1.36), phosphopantetheine adenylyltransferase (CoaD; EC 2.7.7.3), and dephospho-CoA kinase (CoaE; EC 2.7.1.24). The organisms belonging to the domains Bacteria and Eukarya have this pathway (20, 30). CoaB, CoaC, CoaD, and CoaE are detectable in the complete genome sequences as orthologs of the counterparts from E. coli and humans (15, 16, 32). However, there is diversity among the CoaAs and PanKs, depending on their primary structures, and to date, three types of CoaA in bacteria and one type of PanK in eukaryotes have been identified. CoaAs and PanK catalyze the phosphorylation of pantothenate to produce 4′-phosphopantothenate at the first step of the pathway. First, the Escherichia coli CoaA (CoaAEc) was cloned as a prokaryotic type I CoaA after characterization of the properties enzymatically (42-44, 48). Thereafter, the eukaryotic PanK isoforms were isolated from Aspergillus nidulans (AnPanK), mice (mPanK), and humans (hPanK) (10, 17, 28, 29, 33, 34, 54-56). These enzyme activities were clearly regulated by end products of the biosynthetic pathway such as CoA, acetyl-CoA, and malonyl-CoA, and the pantothenate kinases governed the intracellular concentrations of CoA and acyl-CoAs (10, 17, 28, 29, 33, 34, 43, 44, 48, 54, 55). However, CoaAs insensitive to CoA and acyl-CoAs were recently identified from Staphylococcus aureus (CoaASa), Pseudomonas aeruginosa (CoaAPa), and Helicobacter pylori (CoaAHp) as prokaryotic type II and III CoaAs (9, 11, 18, 27). The structural and functional diversity among pantothenate kinases suggests that they are key indicators of the regulation of the CoA biosynthesis. In archaea neither CoaA nor pantothenate synthetase (PanC; EC 6.3.2.1), which catalyzes the condensation of pantoate and β-alanine to produce pantothenate, had been identified biochemically until very recently. COG1829 and COG1701 were assigned as the respective candidates based on comparative genomic analysis (15). COG1701 was reported to be PanC (36), and later the enzyme was revised to phosphopantothenate synthetase, which catalyzed the condensation of phosphopantoate and β-alanine (52). Together with the identification of COG1701, COG1829 was found to be pantoate kinase, responsible for the phosphorylation of pantoate (52). Homologues of pantoate kinase and phosphopantothenate synthetase are found in most archaeal genomes, thus establishing a noncanonical CoA biosynthetic pathway involving the two novel enzymes. However, homologues of the two novel enzymes are missing in the order Thermoplasmatales.Hence, we proceeded with a search for the kinase genes of the remaining archaea to elucidate the regulatory mechanism(s) underlying archaeal CoA biosynthesis. The PTO0232 gene in the complete genome sequence of Picrophilus torridus was identified as encoding a distant homologue of CoaAEc by a BLAST search. The recombinant protein phosphorylated pantothenate, but the activity was not inhibited at all by CoA or CoA thioesters despite its classification as prokaryotic type I CoaA. This functional difference between P. torridus CoaA (CoaAPt) and CoaAEc can be accounted for by an amino acid substitution at position 247 which possibly interacts with CoA. Here we describe the existence of a second subtype in the class of prokaryotic type I CoaAs. 相似文献
5.
To examine the involvement of lipid rafts in an age-associated decline in T cell function, we analyzed the effect of aging on the constituents of lipid rafts in resting mouse CD4(+) T cells. We found a pronounced, age-dependent reduction in PAG/Cbp, which is involved in the regulation of Src family kinases (SFKs) by recruiting Csk (a negative regulator of SFKs) to lipid rafts. This reduction is specific for T cells and is attributed, at least in part, to the reduction in its mRNA level. The reduction of PAG accompanies marked impairment in recruiting Csk to lipid rafts and a concomitant decrease in the inactive forms of SFKs. These findings indicate that old mouse CD4(+) T cells have a defect in a negative SFK regulatory system. 相似文献
6.
Yukiko Kondo Eiichi Tachikawa Shinpei Ohtake Kenzo Kudo Kenzo Mizuma Takeshi Kashimoto Yasuyuki Irie Eiichi Taira 《Molecular and cellular biochemistry》2010,333(1-2):57-64
It is known that the nervous system significantly attenuates systemic inflammatory responses through the parasympathetic nervous system. Furthermore, it has been reported that the alpha7 subunit of a nicotinic acetylcholine receptor is required for a cholinergic inhibition against cytokine synthesis in a macrophage. As antigen-presenting cells (APCs) play a central role in the generation of primary T cell responses and the maintenance of immunity, in this study, we investigated the expression level of nicotinic receptors of a p53-deficient APC cell line (JawsII) derived from a mouse bone marrow. We showed that stimulation of the JawsII cells with lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNF-α) led increase of CD80 and CD86 expression while diminishment of the surface nicotinic receptor. On the other hand, stimulation of nicotinic receptor had no effect on these phenomena. Furthermore, we examined the ability of the cells to release cytokine when stimulated with both nicotine and LPS and showed that the stimulation with LPS augmented the secretion of IL-1a, IL-1b, IL-6, and TNF-α. These results suggested that nicotinic stimulation had no effect on the diminishment of alpha7 nicotinic acetylcholine receptor on JawsII cells by LPS stimulation. 相似文献
7.
Development of bovine oocytes reconstructed with a nucleus from growing stage oocytes after fertilization in vitro 总被引:2,自引:0,他引:2
The developmental capacity of reconstructed bovine oocytes that contained nuclei from growing stage oocytes, 70-119 microm in diameter, was assessed after fertilization in vitro. Nuclei from growing stage oocytes of adult ovaries were transferred to enucleated, fully grown germinal vesicle (GV) stage oocytes. After culture in vitro, the reconstructed oocytes matured, forming the first polar body and MII plate. To supply the ability to form pronuclei, the resultant MII plate was transferred to enucleated MII oocytes, which were obtained by in vitro culture of cumulus-oocyte complexes. After fertilization in vitro, 11-15% of the reconstructed oocytes developed to morulae and blastocysts. To assess the ability to develop to term, a total of 27 late morulae and blastocysts were transferred to 19 recipient cows. Of the three cows that subsequently became pregnant, one recipient, who received two embryos derived from reconstructed oocytes with a nucleus from oocytes 100 to 109 microm in diameter, continued the pregnancy to Day 278 of gestation. This pregnancy, however, was unexpectedly a triplet pregnancy that included a set of identical twins and resulted in the premature birth of the calves, followed by death from lack of post-parturient treatment. These results show that bovine oocyte genomes are capable of supporting term development before the oocytes grow to their full size, which suggests that growing stage oocytes can be directly used as a source of maternal genomes. 相似文献
8.
Yutaka Amako Kyoko Tsukiyama-Kohara Asao Katsume Yuichi Hirata Satoshi Sekiguchi Yoshimi Tobita Yukiko Hayashi Tsunekazu Hishima Nobuaki Funata Hiromichi Yonekawa Michinori Kohara 《Journal of virology》2010,84(1):303-311
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course. 相似文献
9.
T Oda T Morinaga H Maeda 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,181(1):9-17
Lipophilic anionic copolymer (styrene-maleic acid; SMA) conjugates of albumin and antitumor protein neocarzinostatin (NCS) (smancs) were found to stimulate the release of H2O2 and O-2 from the peritoneal macrophages obtained from mice which had been pretreated with the heat-killed preparation of Streptococcus pyogenes (OK-432) in vivo. Some alkyl esters of SMA exhibited effects similar to protein-polymer conjugates. Among them, butyl-SMA was the most effective followed by ethyl-SMA, whereas hydrolyzed SMA showed no effect. This activity was dose-dependent but exhibited a bell-shape profile. These results suggest that the aliphatic ester residue in SMA as well as the main chain of the copolymer may be important for the activation of macrophages. A strong antitumor effect of smancs reported elsewhere may be attributed partly to the activation of macrophages in addition to the direct damage to the cellular DNA by the NCS component. A preliminary investigation of the subcellular mechanism of macrophage activation was carried out in view of membrane fluidity by the fluorescence polarization method. The results showed that the apparent decrease in the cell membrane fluidity and the degree of macrophage activation paralleled the same dose range and at similar time courses. This indicated the interaction of SMA component and macrophage cell membrane. 相似文献
10.