首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
The intraspecific diversity in L. tsangchanensis collected in the Chinese Provinces Yunnan and southwestern Sichuan was studied by chemical and genetic approaches. The samples collected in Yunnan were found to contain cacalol (1) as the sole major component, while samples from Sichuan contained 7alpha- and 7beta-eremophila-9,11-dien-8-one (5 and 6) as well as the 3alpha-angeloyloxy derivative 7 as major components. In addition, the sequences of the internal transcribed spacers (ITSs) of the ribosomal RNA gene indicated that the Yunnan and the Sichuan samples constitute separate clades. These results demonstrate that L. tsangchanensis in Yunnan and Sichuan are distinct.  相似文献   
2.
The chemical constituents of the root extracts and the nucleotide sequences of the atpB-rbcL intergenic region of Ligularia latihastata and L. villosa, collected in northwestern Yunnan Province, were studied. In the twelve collected samples of L. latihastata, two major benzofurans, 5,6-dimethoxy-2-(1-methylethenyl)-1-benzofuran (1) and euparin (2) were detected as major components. The minor compound (2R*,3S*)-5-acetyl-2,3-dihydro-6-hydroxy-2-(1-methylethenyl)-1-benzofuran-3-yl (2Z)-2-[(acetoxy)methyl]but-2-enoate (4) was found to be susceptible to artifact formation upon extraction with EtOH. The intra-specific diversity in chemical composition of the samples was small, but the diversity in the atpB-rbcL sequence was fairly large. Compounds 1 and 2 were also found in the three collected samples of L. villosa, indicating that the two species are chemically close to each other, in agreement with morphological taxonomy.  相似文献   
3.
Five new C21 steroidal glycosides from Cynanchum komarovii Al.Iljinski   总被引:2,自引:0,他引:2  
Liqin W  Yuemao S  Xing X  Yuqing W  Jun Z 《Steroids》2004,69(5):319-324
Five new C21 steroidal glycosides, namely, komarosides D (1), E (2), F (3), G (4), and H (5), along with two known C21 steroidal glycosides cynatratoside E (6) and hancoside A (7), were isolated from the ethanol extract of the roots of Cynanchum komarovii Al.Iljinski (Asclepiadaceae). Their structures were determined by physiochemical and spectroscopic analysis. Among these glycosides, five had an aberrant 13,14:14,15-disecopregnane-type skeleton, and the other two had normal four-ring C21 steroid skeletons. The existence of more than one type of C21 steroid skeleton in one species is rare in the plants of the family Asclepiadaceae, and this has chemotaxonomic significance for this species.  相似文献   
4.
Although the fibroblast growth factor (FGF) signaling axis plays important roles in cell survival, proliferation, and differentiation, the molecular mechanism underlying how the FGF elicits these diverse regulatory signals is not well understood. By using the Frs2α null mouse embryonic fibroblast (MEF) in conjunction with inhibitors to multiple signaling pathways, here we report that the FGF signaling axis activates mTOR via the FGF receptor substrate 2α (FRS2α)-mediated PI3K/Akt pathway, and suppresses autophagy activity in MEFs. In addition, the PI3K/Akt pathway regulated mTOR is crucial for the FGF signaling axis to suppress autophagy in MEFs. Since autophagy has been proposed to play important roles in cell survival, proliferation, and differentiation, the findings suggest a novel mechanism for the FGF signaling axis to transmit regulatory signals to downstream effectors.  相似文献   
5.
红豆杉生物工程的研究进展   总被引:9,自引:0,他引:9  
自从紫杉醇(taxol,又称paclitaxel,结构见图1)被批准作为植源性抗癌药应用以来,由于其天然资源的限制,使得近几年来对寻找及扩大紫杉醇药源途径的研究取得了极大的进展。这些途径大致包括:(1)筛选高产量红豆杉(Taxus)栽培品种,(2)化学合成,(3)生物技术,(4)微生物生产。在这些研究领域特别是生物技术研究领域中,由于目前对紫杉醇的生物合成及关键酶研究所取得的进展,已使人们相信通过基因工程手段作为最佳生产紫杉醇药源途径之一,在不久的将来将会变为现实。本文报道的就是有关紫杉醇在生物工程方面的研究进展概况。1 研究简史红豆杉体外培…  相似文献   
6.
To verify the hypothesis on the involvement of commensal actinomycetes in the biosynthesis of plant maytansinoids that belong to the ansamycin family, selective isolation and targeted screenings were conducted. In total, 164 endophytic actinomycetes isolates were obtained from the roots, twigs, seeds, callus, and germ-free seedlings of “maytansinoids-producing” Trewia nudiflora Linn. by selective isolation methods. Crude extracts of the isolates were screened by antifungal bioassay against Penicillium avellaneum UC-4376, thin-layer chromatography, and liquid chromatography–mass spectrometry detection according to the bioactivity as well as structural characteristics of maytansinoids. Respectively, 25.0%, 64.8%, and 26.7% of the extracts were positive in corresponding screenings. Ten isolates showed positive results in all three different screenings. To confirm on a genetic level, 28 representative isolates from 20 morphological groups were screened by polymerase chain reaction with 3-amino-5-hydroxybenzoic acid synthase gene and carbamoyltransferase gene primers, both of which were involved in the biosynthesis of ansamycins. According to the results of the targeted screenings, two isolates Streptomyces sp. 5B and Streptomyces sp. M27m3 might have the potential of producing ansamycins, which further enhanced the hypothesis that endophyte(s) might be involved in the biosynthesis of plant maytansinoids.  相似文献   
7.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2−/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.  相似文献   
8.
Mycoepoxydiene (MED) is a polyketide isolated from a marine fungus associated with mangrove forests. It contains an oxygen-bridged cyclooctadiene core and an α,β-unsaturated δ-lactone moiety. MED induced the reorganization of cytoskeleton in actively growing HeLa cells by promoting formation of actin stress fiber and inhibiting polymerization of tubulin. MED could induce cell cycle arrest at G2/M in HeLa cells. MED-associated apoptosis was characterized by the formation of fragmented nuclei, PARP cleavage, cytochrome c release, activation of caspase-3, and an increased proportion of sub-G1 cells. Additionally, MED activated MAPK pathways. Interestingly, the time of JNK, p38, and Bcl-2 activation did not correlate with the release of cytochrome c. This study is the first report demonstrating the action mechanism of MED against tumor cell growth. These results provide the potential of MED as a novel low toxic antitumor agent.  相似文献   
9.
紫杉醇生物合成的研究进展   总被引:2,自引:0,他引:2  
本文对近年来研究紫杉醇的生物合成及生物合成途径中关键酶的进展进行了评述。目前紫杉醇的生物合成途径已经基本明了,其生物合成途径中环化酶的基因已经克隆成功。在分子及基因水平上大量生产紫杉醇的曙光已经出现。  相似文献   
10.
Wu Y  Kang Q  Shen Y  Su W  Bai L 《Molecular bioSystems》2011,7(8):2459-2469
Naphthomycins (NATs) are 29-membered naphthalenic ansamacrolactam antibiotics with antimicrobial and antineoplastic activities. Their biosynthesis starts from 3-amino-5-hydroxy-benzoic acid (AHBA). By PCR amplification with primers for AHBA synthase and amino-dehydroquinate (aDHQ) synthase, a genomic region containing orthologs of these genes was identified in Streptomyces sp. CS. It was confirmed to be involved in naphthomycin biosynthesis by deletion of a large DNA fragment, resulting in abolishment of naphthomycin production. A 106 kb region was sequenced, and 32 complete ORFs were identified, including five polyketide synthase genes, eight genes for AHBA synthesis, and putative genes for modification, regulation, transport or resistance. Targeted inactivation and complementation experiments proved that the halogenase gene nat1 is responsible for the chlorination of C-30 of NATs. The nat1 mutant could also be complemented with asm12, the halogenase gene of ansamitocin biosynthesis. Likewise, an asm12 mutant could be complemented with nat1, suggesting a similar catalytic mechanism for both halogenases. A putative hydroxylase gene, nat2, was also inactivated, whereupon the biosynthesis of NATs was completely abolished with a tetraketide desacetyl-SY4b accumulated, indicating the participation of nat2 in the formation of the naphthalene ring. The information presented here expands our understanding of the biosynthesis of naphthalenic ansamycins, and may pave the way for engineering ansamacrolactams with improved pharmaceutical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号