首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
  国内免费   8篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   6篇
  2016年   1篇
  2015年   9篇
  2014年   6篇
  2013年   4篇
  2012年   14篇
  2011年   7篇
  2010年   6篇
  2009年   13篇
  2008年   12篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1988年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
1.
There is a renewed interest in the structure and functioning of the mitochondrial respiratory chain with the realization that a number of genetic disorders result from defects in mitochondrial electron transfer. These so-called mitochondrial myopathies include diseases of muscle, heart, and brain. The respiratory chain can be fractionated into four large multipeptide complexes, an NADH ubiquinone reductase (complex I), succinate ubiquinone reductase (complex II), ubiquinol oxidoreductase (complex III), and cytochromec oxidase (complex IV). Mitochondrial myopathies involving each of these complexes have been described. This review summarizes compositional and structural data on the respiratory chain proteins and describes the arrangement of these complexes in the mitochondrial inner membrane. This biochemical information is provided as a framework for the diagnosis and molecular characterization of mitochondrial diseases.  相似文献   
2.
This study aims to explore the ability of magnetic resonance imaging (MRI) in mucin 1 (MUC1) modified superparamagnetic iron oxide nanoparticle (SPION) targeting human pancreatic cancer (PC). The MUC1 target-directed probe was prepared through MUC1 conjugated to SPION using the chemical method to assess its physiochemical characteristics, including hydration diameter, surface charge, and magnetic resonance signal. The cytotoxicity of MUC1-USPION was verified by MTS assay. BxPC-3 was cultured with MUC1-USPION and SPION in different concentrations. The combined condition of the targeted probes and cells were observed through Prussian blue staining. The nude mice model of pancreatic cancer was established to investigate the application of the probe. MRI was performed to determine the intensity of the signal of the transplanted tumor, while immunohistochemistry and Western blot analysis were performed to detect the expression of MUC1 after taking the transplanted tumor specimen. The particle size of the prepared molecular probe was 63.5 ± 3.2 nm, and the surface charge was 10.2 mV. Furthermore, the probe solution could significantly reduce the MRI at T2, and the magnetic resonance transverse relaxation rate (ΔR2) has a linear relationship with the concentration of iron in the solution. The cell viability of MUC1-USPION in different concentrations revealed no statistical difference, according to the MTS assay. In vitro, the MRI demonstrated decreased T2WI signal intensity in both groups, especially the targeting group. In vivo, MUC1 could selectively accumulate in the nude mice model, and significantly reduce the T2 signal strength. In subsequent experiments, the expression of MUC1 was high in pancreatic cancer tissues, but low in normal pancreatic tissues, as determined by immunohistochemistry and Western blot analysis. The prepared samples can be combined with pancreatic cancer tissue specificity by in vivo imaging, providing reliable early in vivo imaging data for disease diagnosis.  相似文献   
3.
采用Morris水迷宫法和NBT法分别检测了褪黑激素对D-半乳糖处理小鼠的空间学习记忆能力和脑组织超氧物歧化酶活力的影响。结果表明,D-半乳糖对小鼠的逃避潜伏期无显著影响,但降低小鼠的穿环系数,还促使小鼠的脑组织超氧物歧化酶活力明显升高;褪黑激素可提高小鼠的空间学习记忆能力,降低D-半乳糖所引起的超氧物歧化酶活力升高。  相似文献   
4.
Genomic information has already been applied to prokaryotic species definition and classification. However, the contribution of the genome sequence to prokaryotic genus delimitation has been less studied. To gain insights into genus definition for the prokaryotes, we attempted to reveal the genus-level genomic differences in the current prokaryotic classification system and to delineate the boundary of a genus on the basis of genomic information. The average nucleotide sequence identity between two genomes can be used for prokaryotic species delineation, but it is not suitable for genus demarcation. We used the percentage of conserved proteins (POCP) between two strains to estimate their evolutionary and phenotypic distance. A comprehensive genomic survey indicated that the POCP can serve as a robust genomic index for establishing the genus boundary for prokaryotic groups. Basically, two species belonging to the same genus would share at least half of their proteins. In a specific lineage, the genus and family/order ranks showed slight or no overlap in terms of POCP values. A prokaryotic genus can be defined as a group of species with all pairwise POCP values higher than 50%. Integration of whole-genome data into the current taxonomy system can provide comprehensive information for prokaryotic genus definition and delimitation.  相似文献   
5.
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.  相似文献   
6.
Microbial hormone-sensitive lipases (HSLs) contain a CAP domain and a catalytic domain. However, it remains unclear how the CAP domain interacts with the catalytic domain to maintain the stability of microbial HSLs. Here, we isolated an HSL esterase, E40, from a marine sedimental metagenomic library. E40 exhibited the maximal activity at 45 °C and was quite thermolabile, with a half-life of only 2 min at 40 °C, which may be an adaptation of E40 to the permanently cold sediment environment. The structure of E40 was solved to study its thermolability. Structural analysis showed that E40 lacks the interdomain hydrophobic interactions between loop 1 of the CAP domain and α7 of the catalytic domain compared with its thermostable homologs. Mutational analysis showed that the introduction of hydrophobic residues Trp202 and Phe203 in α7 significantly improved E40 stability and that a further introduction of hydrophobic residues in loop 1 made E40 more thermostable because of the formation of interdomain hydrophobic interactions. Altogether, the results indicate that the absence of interdomain hydrophobic interactions between loop 1 and α7 leads to the thermolability of E40. In addition, a comparative analysis of the structures of E40 and other thermolabile and thermostable HSLs suggests that the interdomain hydrophobic interactions between loop 1 and α7 are a key element for the thermostability of microbial HSLs. Therefore, this study not only illustrates the structural element leading to the thermolability of E40 but also reveals a structural determinant for HSL thermostability.  相似文献   
7.
Protease MCP-01 is similar to other cold-adapted enzymes in that it is a cold-adapted serine protease having high specific activity and low thermostability at low and moderate temperature. Its thermolability and self-autolysis has resulted in difficulties in its purification, preservation and research on its structure and function. The disaccharide trehalose is known to effectively stabilize proteins. Its prevention effect on the autolysis of cold-adapted protease MCP-01 was monitored by capillary electrophoresis. In the absence of trehalose, protease MCP-01 autolyzed rapidly at 35 degrees C. However, when trehalose was added, autolysis was remarkably prevented and the loss of activity reduced. MCP-01 may be a useful model for basic research on the interaction of protein and trehalose.  相似文献   
8.
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker polypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed.  相似文献   
9.
Elastin is a common insoluble protein that is abundant in marine vertebrates, and for this reason its degradation is important for the recycling of marine nitrogen. It is still unclear how marine elastin is degraded because of the limited study of marine elastases. Here, a novel protease belonging to the M23A subfamily, secreted by Pseudoalteromonas sp. CF6-2 from deep-sea sediment, was purified and characterized, and its elastolytic mechanism was studied. This protease, named pseudoalterin, has low identities (<40%) to the known M23 proteases. Pseudoalterin has a narrow specificity but high activity toward elastin. Analysis of the cleavage sites of pseudoalterin on elastin showed that pseudoalterin cleaves the glycyl bonds in hydrophobic regions and the peptide bonds Ala–Ala, Ala–Lys, and Lys–Ala involved in cross-linking. Two peptic derivatives of desmosine, desmosine-Ala-Ala and desmosine-Ala-Ala-Ala, were detected in the elastin hydrolysate, indicating that pseudoalterin can dissociate cross-linked elastin. These results reveal a new elastolytic mechanism of the M23 protease pseudoalterin, which is different from the reported mechanism where the M23 proteases only cleave glycyl bonds in elastin. Genome analysis suggests that M23 proteases may be popular in deep-sea sediments, implying their important role in elastin degradation. An elastin degradation model of pseudoalterin was proposed, based on these results and scanning electron microscopic analysis of the degradation by pseudoalterin of bovine elastin and cross-linked recombinant tropoelastin. Our results shed light on the mechanism of elastin degradation in deep-sea sediment.  相似文献   
10.
Collagens are the most abundant proteins in marine animals and their degradation is important for the recycling of marine nitrogen. However, it is rather unclear how marine collagens are degraded because few marine collagenolytic proteases are studied in detail. Deseasins are a new type of multidomain subtilases. Here, the collagenolytic activity of deseasin MCP-01, the type example of deseasins, was studied. MCP-01 had broad substrate specificity to various type collagens from terrestrial and marine animals. It completely decomposed insoluble collagen into soluble peptides and amino acids, and was more prone to degrade marine collagen than terrestrial collagen. Thirty-seven cleavage sites of MCP-01 on bovine collagen chains were elucidated, showing the cleavage is various but specific. As the main extracellular cold-adapted protease from deep-sea bacterium Pseudoalteromonas sp. SM9913, MCP-01 displayed high activity at low temperature and alkaline range. Our data also showed that the C-terminal polycystic kidney disease (PKD) domain of MCP-01 was able to bind insoluble collagen and facilitate the insoluble collagen digestion by MCP-01. Site-directed mutagenesis demonstrated that Trp-36 of the PKD domain played a key role in its binding to insoluble collagen. It is the first time that the structure and function of a marine collagenolytic protease, deseasin MCP-01, has been studied in detail. Moreover, the PKD domain was experimentally proven to bind to insoluble protein for the first time. These results imply that MCP-01 would play an important role in the degradation of deep-sea sedimentary particulate organic nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号