首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The World Health Organization (WHO) endorsed diagnosis of leprosy (also known as Hansen’s disease) entirely based on clinical cardinal signs, without microbiological confirmation, which may lead to late or misdiagnosis. The use of slit skin smears is variable, but lacks sensitivity. In 2017–2018 during the ComLep study, on the island of Anjouan (Union of the Comoros; High priority country according to WHO, 310 patients were diagnosed with leprosy (paucibacillary = 159; multibacillary = 151), of whom 263 were sampled for a skin biopsy and fingerstick blood, and 260 for a minimally-invasive nasal swab. In 74.5% of all skin biopsies and in 15.4% of all nasal swabs, M. leprae DNA was detected. In 63.1% of fingerstick blood samples, M. leprae specific antibodies were detected with the quantitative αPGL-I test. Results show a strong correlation of αPGL-I IgM levels in fingerstick blood and RLEP-qPCR positivity of nasal swabs, with the M. leprae bacterial load measured by RLEP-qPCR of skin biopsies. Patients with a high bacterial load (≥50,000 bacilli in a skin biopsy) can be identified with combination of counting lesions and the αPGL-I test. To our knowledge, this is the first study that compared αPGL-I IgM levels in fingerstick blood with the bacterial load determined by RLEP-qPCR in skin biopsies of leprosy patients. The demonstrated potential of minimally invasive sampling such as fingerstick blood samples to identify high bacterial load persons likely to be accountable for the ongoing transmission, merits further evaluation in follow-up studies.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号