首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   8篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   14篇
  2013年   7篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   11篇
  2006年   24篇
  2005年   12篇
  2004年   14篇
  2003年   9篇
  2002年   14篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1995年   3篇
  1993年   2篇
  1989年   2篇
  1988年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
1.
The effect of temperature, light-spectrum, desiccation and salinity gradients on the photosynthesis of a Japanese subtidal brown alga, Sargassum macrocarpum (Fucales), was determined using a pulse amplitude modulation-chlorophyll fluorometer and dissolved oxygen sensors. Temperature responses of the maximum (Fv/Fm in darkness) and effective (ΔF/Fm at 50 μmol photons m−2 s−1; = ΦPSII) quantum yields during 6-day culture (4–36°C) remained high at 12–28°C, but decreased at higher temperatures. Nevertheless, ΔF/Fm also dropped at temperatures below 8°C, suggesting light sensitivity under chilling temperatures because Fv/Fm remained high. Photosynthesis–irradiance responses at 24°C under red (660 nm), green (525 nm), blue (450 nm) and white light (metal halide lamp) showed that maximum net photosynthesis under blue and white light was greater than under red and green light, indicating the sensitivity and photosynthetic availability of blue light in the subtidal light environment. In the desiccation experiment, samples under aerial exposure of up to 8 h under dim-light at 24°C and 50% humidity showed that ΔF/Fm quickly declined after more than 45 min of emersion; furthermore, ΔF/Fm also failed to recover to initial levels even after 1 day of rehydration in seawater. Under the emersion state, the ΔF/Fm remained high when the relative water content (RWC) was greater than 50%; in contrast, it quickly dropped when the RWC was less than 50%. When the RWC was reduced below 50%, ΔF/Fm did not return to initial levels, regardless of subsequent re-hydration, suggesting a low capacity of photosynthesis to recover from desiccation. The stenohaline response of photosynthesis under 3-day culture is evident, given that ΔF/Fm declined when salinity was beyond 20–40 psu. Adaptation to subtidal environments in temperate waters of Japan can be linked to these traits.  相似文献   
2.
The interaction of 2-macroglobulin (2M) with an alkaline serine proteinase (ALPase I) from alkalophilicBacillus sp. grown in an extraordinarily alkaline environment was investigated. Stoichiometry of the reaction showed that ALPase I bound to 2M in a molar ratio of about 21. The 2M-ALPase I complex showed about 80% of the proteinase activity shown by ALPase I in the hydrolysis of succinyl-l-alanyl-l-alanyl-l-prolyl-l-phenylalanyl-4-methyl-coumaryl-7-amide (Suc-Ala-Ala-Pro-Phe-MCA) and casein. The conformational changes in the 2M molecule caused by the complex formation at pH 7.5 were determined from electron micrographs and difference spectra. The antigenic activity of the 2M-ALPase I complex with the anti-ALPase I antiserum was found to be completely abolished. Immunoelectrophoresis of the complex incubated at pH 7.5 after 48 h showed no appreciable change, and the complex was recognized as exhibiting enhanced stability at pH 7.5.  相似文献   
3.
To obtain a new serine protease from alkalophilic Bacillus sp. NKS-21, shotgun cloning was carried out. As a result, a new protease gene was obtained. It encoded an intracellular serine protease (ISP-1) in which there was no signal sequence. The molecular weight was 34,624. The protease showed about 50% homology with those of intracellular serine proteases (ISP-1) from Bacillus subtilis, B. polymyxa, and alkalophilic Bacillus sp. No. 221. The amino acid residues that form the catalytic triad, Ser, His and Asp, were completely conserved in comparison with subtilisins (the extracellular proteases from Bacillus). The cloned intracellular protease was expressed in Escherichia coli, and its purification and characterization were carried out. The enzyme showed stability under alkaline condition at pH 10 and tolerance to surfactants. The cloned ISP-1 digested well nucleoproteins, clupein and salmin, for the substrates.The nucleotide sequence data reported in this paper will appear in the GSDB, DDBJ, EMBL, and NCBI nucleotide sequence databases with the accession number D37921.  相似文献   
4.
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   
5.
Most α-synuclein (α-syn) deposited in Lewy bodies, the pathological hallmark of Parkinson disease (PD), is phosphorylated at Ser-129. However, the physiological and pathological roles of this modification are unclear. Here we investigate the effects of Ser-129 phosphorylation on dopamine (DA) uptake in dopaminergic SH-SY5Y cells expressing α-syn. Subcellular fractionation of small interfering RNA (siRNA)–treated cells shows that G protein–coupled receptor kinase 3 (GRK3), GRK5, GRK6, and casein kinase 2 (CK2) contribute to Ser-129 phosphorylation of membrane-associated α-syn, whereas cytosolic α-syn is phosphorylated exclusively by CK2. Expression of wild-type α-syn increases DA uptake, and this effect is diminished by introducing the S129A mutation into α-syn. However, wild-type and S129A α-syn equally increase the cell surface expression of dopamine transporter (DAT) in SH-SY5Y cells and nonneuronal HEK293 cells. In addition, siRNA-mediated knockdown of GRK5 or GRK6 significantly attenuates DA uptake without altering DAT cell surface expression, whereas knockdown of CK2 has no effect on uptake. Taken together, our results demonstrate that membrane-associated α-syn enhances DA uptake capacity of DAT by GRKs-mediated Ser-129 phosphorylation, suggesting that α-syn modulates intracellular DA levels with no functional redundancy in Ser-129 phosphorylation between GRKs and CK2.  相似文献   
6.
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1‐cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL‐2) protein in placenta along with increased expression toward the end of pregnancy. PL‐2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1‐cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1‐cre;R26GRR mice revealed that tdsRed‐positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1‐cre;R26GRR testes suggested that Cre‐mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1cre mice line provides a unique resource to understand testicular germ‐cell development. genesis 54:389–397, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
7.
A new cell line of human ovarian clear cell carcinoma (CCC), TU-OC-2, was established and characterized. The cells were polygonal in shape, grew in monolayers without contact inhibition and were arranged in islands like pieces of a jigsaw puzzle. The chromosome numbers ranged from 41 to 96. A low rate of proliferation was observed and the doubling time was 37.5 h. The IC50 values of cisplatin, 7-ethyl-10-hydroxycamptothecin (SN38), which is an active metabolite of camptothecin, and paclitaxel were 7.7 μM, 17.7 nM and 301 nM, respectively. The drug sensitivity assay indicated that TU-OC-2 was sensitive to SN38, but resistant to cisplatin and paclitaxel. Mutational analysis revealed that TU-OC-2 cells have no mutations of PIK3CA in exons 9 and 20 and of TP53 in exons 4–9. We observed the loss of ARID1A protein expression in TU-OC-2 cells by western blot analysis and in the original tumor tissue by immunohistochemistry. This cell line may be useful for studying the chemoresistant mechanisms of CCC and exploring novel therapeutic targets such as the ARID1A-related signaling pathway.  相似文献   
8.
9.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   
10.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in maintenance of the character of progenitor cells. Musashi1 contains two ribonucleoprotein-type RNA-binding domains (RBDs), RBD1 and RBD2, the affinity to RNA of RBD1 being much higher than that of RBD2. We previously reported the structure and mode of interaction with RNA of RBD2. Here, we have determined the structure and mode of interaction with RNA of RBD1. We have also analyzed the surface electrostatic potential and backbone dynamics of both RBDs. The two RBDs exhibit the same ribo-nucleoprotein-type fold and commonly make contact with RNA on the beta-sheet side. On the other hand, there is a remarkable difference in surface electrostatic potential, the beta-sheet of RBD1 being positively charged, which is favorable for binding negatively charged RNA, but that of RBD2 being almost neutral. There is also a difference in backbone dynamics, the central portion of the beta-sheet of RBD1 being flexible, but that of RBD2 not being flexible. The flexibility of RBD1 may be utilized in the recognition process to facilitate an induced fit. Thus, comparative studies have revealed the origin of the higher affinity of RBD1 than that of RBD2 and indicated that the affinity of an RBD to RNA is not governed by its fold alone but is also determined by its surface electrostatic potential and/or backbone dynamics. The biological role of RBD2 with lower affinity is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号