首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   22篇
  国内免费   2篇
  289篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   18篇
  2014年   2篇
  2013年   14篇
  2012年   16篇
  2011年   6篇
  2010年   6篇
  2009年   9篇
  2008年   7篇
  2007年   5篇
  2006年   7篇
  2005年   9篇
  2004年   21篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   10篇
  1999年   9篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1981年   3篇
  1978年   5篇
  1977年   5篇
  1976年   2篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1967年   2篇
  1952年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.  相似文献   
2.
We demonstrate that both phospholipase A1 and phospholipase A2 are associated with isolated yeast mitochondria (Saccharomyces cerevisiae). Activity assays indicate that, unlike most other mitochondrial phospholipases A, the yeast enzymes are Ca(2+)-independent with acidic (pH 4-5) as well as alkaline (pH 8-9) pH optima. Data obtained with mitochondria isolated from either fermenting or respiring cells, and initial observations with a petite strain, strongly suggest that a phospholipase A2 with an acidic pH optimum functions in the in vivo adaptation and maintenance of mitochondrial membranes required for respiration.  相似文献   
3.
R Gysin  B Yost  S D Flanagan 《Biochemistry》1986,25(6):1271-1278
Creatine kinase, actin, and nu 1 are three proteins of Mr 43 000 associated with membranes from electric organ highly enriched in nicotinic acetylcholine receptor. High levels of creatine kinase are required to maintain adequate ATP levels, while actin may play a role in maintaining the synaptic cytoskeleton. Previous investigations have prompted the conclusion that postsynaptic specializations at the receptor-enriched membrane domains in electroplax contain the brain form of creatine kinase rather than the form of creatine kinase predominantly found in muscle. We have examined this conclusion by purifying Torpedo brain creatine kinase to virtual homogeneity in order to examine its immunochemical, molecular, and electrophoretic properties. On the basis of immunological cross-reactivity and isozyme analysis, the receptor-associated creatine kinase is identified to be of the muscle type. When the molecular characteristics of Torpedo brain and muscle creatine kinase are compared, the brain enzyme is positioned at a more basic pH during chromatofocusing and on two-dimensional gel electrophoresis (pI = 7.5-7.9). Furthermore, electrophoretic mobilities of the brain and muscle forms of creatine kinase differ in sodium dodecyl sulfate electrophoresis: the brain isozyme of creatine kinase has lower apparent molecular weight (Mr 41 000) when compared with the muscle enzyme (Mr 43 000). On the basis of the results of our current investigations, the hypothesis that the brain isozyme of creatine kinase is a component of the postsynaptic specializations of the Torpedo californica electroplax must be abandoned. Recent sequence data have established close homology between Torpedo and mammalian muscle creatine kinases. On the basis of electrophoretic criteria, our results indicate that a lower degree of homology exists between the brain isozymes.  相似文献   
4.
The effect of choline deficiency on the de novo pathway for phosphatidylcholine (PC) synthesis in the lung was investigated in rats fed a washed soy protein (lipotrophic) diet deficient in choline and methionine for 2-3 wk. Lungs from lipotrophic rats showed a decreased content of choline and choline-phosphate (P less than 0.05) compared with control but no change in content of cytidine 5'-diphosphocholine or PC. Isolated perfused lungs from lipotrophic rats were evaluated for choline and fatty acid utilization for PC synthesis. Lipotrophic lungs perfused with 5 microM [14C-methyl]-choline chloride showed increased incorporation into PC while there was no significant effect at saturating levels of choline (100 microM). There was increased incorporation of [1-14C]-palmitic acid into PC and diglyceride and increased incorporation of D-[U-14C]glucose into fatty acids of PC. Increased choline and glucose incorporation was not due to alteration of intracellular specific activity of these substrates. This study indicates the utilization of choline and fatty acid for PC synthesis is stimulated as a result of choline deficiency while lung CDP-choline concentration is maintained, possibly through regulation of choline phosphate cytidyl transferase activity. These mechanisms compensate for decreased choline availability to maintain the PC content of lungs.  相似文献   
5.
[adenine-U-14C]ADP-ribose-agmatine and [adenine-U-14C ))ADP-ribose-histone were synthesized by an NAD:arginine ADP-ribosyltransferase from [14C]NAD and agmatine and histone, respectively. The pseudo-first order rate constants for breakdown of the two components either in 0.4 N NaOH or in 0.4 M neutral hydroxylamine were identical. Hydroxylamine treatment of [14C]ADP-ribose-agmatine or [32P]ADP-ribose-histone yielded a single radioactive product which was separated by high pressure liquid chromatography and identified as ADP-ribose-hydroxamate by the formation of a ferric chloride complex. Hydrolysis of ADP-ribose-hydroxamate with snake venom phosphodiesterase resulted in the formation of 5'-AMP, consistent with the presence of a pyrophosphate bond. Incubation of ADP-ribose-[14C]agmatine, synthesized by the ADP-ribosyltransferase from NAD and [14C]agmatine, with 0.4 M neutral hydroxylamine resulted in the release of [14C]agmatine rather than phosphoribosyl[14C]agmatine. In addition, neither NAD nor ADP-ribose reacts with hydroxylamine; i.e. there was no evidence of nucleophilic attack by hydroxylamine at the pyrophosphate bond. The ADP-ribosyl-protein linkage formed by the NAD:arginine ADP-ribosyltransferase is considerably more stable to hydroxylamine than is the ADP-ribose-glutamate bond. The presence of ADP-ribose-arginine and ADP-ribose-glutamate synthesized by the ADP-ribosyltransferase and poly(ADP-ribose) synthetase, respectively, may be the chemical basis for the "hydroxylamine-stable" and "hydroxylamine-labile" bonds described by Hilz (Hilz, H. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 1415-1425).  相似文献   
6.
The apple rootstock,A106(Malus sieboldii),had 17 bivalents in pollen mother cells at meiotic metaphase 1,and 17 chromosomes in a haploid pollen cell.Karyotypes were prepared from root-tip cells with 2n=34 chromosomes,Seven out of 82 karyotypes(8.5%) showed one pari of satellites at the end of the short arm of chromosome 3.C-bands were shown on 6 pairs of chromosomes 2,4,6,8,14,and 16 near the telomeric regions of short arms.Probes for three ripening-related genes from Malus x domestica:endopolygalacturonase(EPG,0.6kb),ACC oxidase(1.2kb),and ACC synthase(2kb)were hybridized in situ to metaphase chromosomes of A106.Hybridization sites for the EPG gene were observed on the long arm of chromosome 14 in 15 out of 16 replicate spreads and proximal to the centromere of chromosomes 6 and 11.For the ACC oxidase gene,hylridization sites were observed in the telomeric region of the short arm of chromosomes 5 and 11 in 87% and 81% of 16 spreads respectively,proxiaml to the centromere of chromosome 1 in 81% of the spreads,and on the long arm of chromosome 13 in 50% of the spreads. Physical mapping of three fruit ripening genes in an apple rootstock A106.Twenty five spreads were studied for the ACC synthase gene and hybridization sites were observed in the telomeric region of the short arm of chromosome 12 in 96% of the spreads.chromosomes 9 and 10 in 76% of the spreads,and chromosome 17 in 56% of the spreads.  相似文献   
7.
In order to understand the nature of ATP and L-glutamate binding to glutamine synthetase, and the involvement of Arg 339 and Arg 359 in catalysis, these amino acids were changed to cysteine via site-directed mutagenesis. Individual mutations (Arg-->Cys) at positions 339 and 359 led to a sharp drop in catalytic activity. Additionally, the Km values for the substrates ATP and glutamate were elevated substantially above the values for wild-type (WT) enzyme. Each cysteine was in turn chemically modified to an arginine "analog" to attempt to "rescue" catalytic activity by covalent modification; 2-chloroacetamidine (CA) (producing a thioether) and 2,2'-dithiobis (acetamidine)(DTBA) (producing a disulfide) were the reagents used to effect these chemical transformations. Upon reaction with CA, both R339C and R359C mutants showed a significant regain of catalytic activity (50% and 70% of WT, respectively) and a drop in Km value for ATP close to that for WT enzyme. With DTBA, chemically modified R339C had a greater kcat than WT glutamine synthetase, but chemically modified R359C only regained a small amount of activity. Modification with DTBA was quantitative for each mutant and each modified enzyme had similar Km values for both ATP and glutamate. The high catalytic activity of DTBA-modified R339C could be reversed to that of unmodified R339C by treatment with dithiothreitol, as expected for a modified enzyme containing a disulfide bond. Modification of each cysteine-containing mutant to a lysine "analog" was accomplished using 3-bromopropylamine (BPA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
A proteinase (EC 3.4.-.-) active at physiological pH has been isolated from human skin utilizing gel filtration and affinity chromatography techniques. The proteinase has a molecular weight of approx. 28 000 and it is inhibited by alpha 2-macroglobulin, alpha 1-antitrypsin, C-1 inactivatory, soybean trypsin inhibitor and diisopropyl fluorophosphate. 2njection of 1 ng of purified proteinase into rabbit skin induces polymorphonuclear leukocyte infiltration of the cutis. Inhibition of enzyme activity with diisopropyl fluorophosphate inhibits the chemotactic effect. Addition of 0.2 microgram/ml of purified proteinase to fibroblast cultures kills the cells within minutes. This proteinase may play a significant role in modulating the inflammatory response after cellular injury.  相似文献   
9.
The mechanism of pneumotoxicity of 3-methylindole has been postulated to occur via protein alkylation or lipid peroxidation. This report describes the effects of the addition of 3-methylindole to goat lung microsomes to evaluate the possibility that this xenobiotic may increase NADPH-supported lipid peroxidation. Concentrations of malondialdehyde were measured as an index of lipid peroxidation. Instead of a stimulation of lipid peroxidation by 3-methylindole, a complete inhibition of lipid peroxidation was produced by concentrations of 3-methylindole as low as 10 microM. The addition of 3-methylindole to actively peroxidizing microsomes (NADPH-supported) caused an immediate cessation of malondialdehyde production. These results demonstrate that 3-methylindole pneumotoxicity does not proceed by a mechanism of lipid peroxidation, but in fact, this molecule may act as an effective antioxidant to prevent lipid peroxidation in pulmonary tissue.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号