首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   7篇
  国内免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   12篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   9篇
  2012年   7篇
  2011年   14篇
  2010年   5篇
  2009年   10篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有135条查询结果,搜索用时 46 毫秒
1.
Molecular Biology Reports - Western flower thrips, Frankliniella occidentalis is an economically important agricultural pest. It causes damage by feeding and oviposition or indirectly by plant...  相似文献   
2.
In recent years, High-Throughput Sequencing (HTS) based methods to detect mutations in biotherapeutic transgene products have become a key quality step deployed during the development of manufacturing cell line clones. Previously we reported on a higher throughput, rapid mutation detection method based on amplicon sequencing (targeting transgene RNA) and detailed its implementation to facilitate cell line clone selection. By gaining experience with our assay in a diverse set of cell line development programs, we improved the computational analysis as well as experimental protocols. Here we report on these improvements as well as on a comprehensive benchmarking of our assay. We evaluated assay performance by mixing amplicon samples of a verified mutated antibody clone with a non-mutated antibody clone to generate spike-in mutations from ∼60% down to ∼0.3% frequencies. We subsequently tested the effect of 16 different sample and HTS library preparation protocols on the assay's ability to quantify mutations and on the occurrence of false-positive background error mutations (artifacts). Our evaluation confirmed assay robustness, established a high confidence limit of detection of ∼0.6%, and identified protocols that reduce error levels thereby significantly reducing a source of false positives that bottlenecked the identification of low-level true mutations.  相似文献   
3.
Abstract

Four different DNA extraction methods were used to extract genomic DNA of the medicinal mushroom Lingzhi from its developing stage materials, such as mycelium, dry fruiting body, or sliced and spore powder or sporoderm‐broken spore powder. The DNA samples were analyzed using agarose gel electrophoresis, UV spectrophotometer, and PCR amplification. According to the average yields and purity of DNA, high salt concentrations and low pH methods were the best for DNA extraction. The mycelia and sporoderm‐broken spore powder yielded higher and purer DNA. The method developed could effectively eliminate the influence of the secondary metabolites to DNA extraction. The DNA samples extracted from the developed method could be successfully used for PCR applications.  相似文献   
4.
Much of the 70% of global water usage associated with agriculture passes through stomatal pores of plant leaves. The guard cells, which regulate these pores, thus have a profound influence on photosynthetic carbon assimilation and water use efficiency of plants. We recently demonstrated how quantitative mathematical modeling of guard cells with the OnGuard modeling software yields detail sufficient to guide phenotypic and mutational analysis. This advance represents an all-important step toward applications in directing “reverse-engineering” of guard cell function for improved water use efficiency and carbon assimilation. OnGuard is nonetheless challenging for those unfamiliar with a modeler’s way of thinking. In practice, each model construct represents a hypothesis under test, to be discarded, validated or refined by comparisons between model predictions and experimental results. The few guidelines set out here summarize the standard and logical starting points for users of the OnGuard software.  相似文献   
5.

Background

Antioxidant vitamin (vitamin E, beta-carotene, and vitamin C) are widely used for preventing major cardiovascular outcomes. However, the effect of antioxidant vitamin on cardiovascular events remains unclear.

Methodology and Principal Findings

We searched PubMed, EmBase, the Cochrane Central Register of Controlled Trials, and the proceedings of major conferences for relevant literature. Eligible studies were randomized controlled trials that reported on the effects of antioxidant vitamin on cardiovascular outcomes as compared to placebo. Outcomes analyzed were major cardiovascular events, myocardial infarction, stroke, cardiac death, total death, and any possible adverse events. We used the I2 statistic to measure heterogeneity between trials and calculated risk estimates for cardiovascular outcomes with random-effect meta-analysis. Independent extraction was performed by two reviewers and consensus was reached. Of 293 identified studies, we included 15 trials reporting data on 188209 participants. These studies reported 12749 major cardiovascular events, 6699 myocardial infarction, 3749 strokes, 14122 total death, and 5980 cardiac deaths. Overall, antioxidant vitamin supplementation as compared to placebo had no effect on major cardiovascular events (RR, 1.00; 95%CI, 0.96–1.03), myocardial infarction (RR, 0.98; 95%CI, 0.92–1.04), stroke (RR, 0.99; 95%CI, 0.93–1.05), total death (RR, 1.03; 95%CI, 0.98–1.07), cardiac death (RR, 1.02; 95%CI, 0.97–1.07), revascularization (RR, 1.00; 95%CI, 0.95–1.05), total CHD (RR, 0.96; 95%CI, 0.87–1.05), angina (RR, 0.98; 95%CI, 0.90–1.07), and congestive heart failure (RR, 1.07; 95%CI, 0.96 to 1.19).

Conclusion/Significance

Antioxidant vitamin supplementation has no effect on the incidence of major cardiovascular events, myocardial infarction, stroke, total death, and cardiac death.  相似文献   
6.
Aplastic anemia (AA) is a bone marrow failure syndrome that is caused largely by profound quantitative and qualitative defects of hematopoietic stem and progenitor cells. However, the mechanisms underlying these defects remain unclear. Under conditions of stress, autophagy acts as a protective mechanism for cells. We therefore postulated that autophagy in CD34+ hematopoietic progenitor cells (HPCs) from AA patients might be impaired and play a role in the pathogenesis of AA. To test this hypothesis, we tested autophagy in CD34+ cells from AA samples and healthy controls and investigated the effect of autophagy on the survival of adult human bone marrow CD34+ cells. We found that the level of autophagy in CD34+ cells from AA patients was significantly lower than in age/sex-matched healthy controls, and lower in cases of severe AA than in those with non-severe AA. Autophagy in CD34+ cells improved upon amelioration of AA but, compared to healthy controls, was still significantly reduced even in AA patients who had achieved a complete, long-term response. We also showed that although the basal autophagy in CD34+ cells was low, the autophagic response of CD34+ cells to “adversity” was rapid. Finally, impaired autophagy resulted in reduced differentiation and proliferation of CD34+ cells and sensitized them to death and apoptosis. Thus, our results confirm that autophagy in CD34+ cells from AA patients is impaired, that autophagy is required for the survival of CD34+ cells, and that impaired autophagy in CD34+ HPCs may play an important role in the pathogenesis of AA.  相似文献   
7.
Oscillations in cytosolic-free Ca2+ concentration ([Ca2+]i) have been proposed to encode information that controls stomatal closure. [Ca2+]i oscillations with a period near 10 min were previously shown to be optimal for stomatal closure in Arabidopsis (Arabidopsis thaliana), but the studies offered no insight into their origins or mechanisms of encoding to validate a role in signaling. We have used a proven systems modeling platform to investigate these [Ca2+]i oscillations and analyze their origins in guard cell homeostasis and membrane transport. The model faithfully reproduced differences in stomatal closure as a function of oscillation frequency with an optimum period near 10 min under standard conditions. Analysis showed that this optimum was one of a range of frequencies that accelerated closure, each arising from a balance of transport and the prevailing ion gradients across the plasma membrane and tonoplast. These interactions emerge from the experimentally derived kinetics encoded in the model for each of the relevant transporters, without the need of any additional signaling component. The resulting frequencies are of sufficient duration to permit substantial changes in [Ca2+]i and, with the accompanying oscillations in voltage, drive the K+ and anion efflux for stomatal closure. Thus, the frequency optima arise from emergent interactions of transport across the membrane system of the guard cell. Rather than encoding information for ion flux, these oscillations are a by-product of the transport activities that determine stomatal aperture.Stomata in the leaf epidermis are the main pathway both for CO2 entry for photosynthesis and for foliar water loss by transpiration. Guard cells surround the stomatal pore and regulate the aperture, balancing the often conflicting demands for CO2 and water conservation. Guard cells open and close the pore by expanding and contracting through the uptake and loss, respectively, of osmotic solutes, notably of K+, Cl, and malate2− (Mal2−; Pandey et al., 2007; Kim et al., 2010; Roelfsema and Hedrich, 2010; Lawson and Blatt, 2014). These transport processes comprise the final effectors of a regulatory network that coordinates transport across the plasma membrane and tonoplast, and maintains the homeostasis of the guard cell. A number of well-defined signals—including light, CO2, drought and the water stress hormone abscisic acid (ABA)—act on this network, altering transport, solute content, turgor and cell volume, and ultimately stomatal aperture.Much research has focused on stomatal closure, underscoring both Ca2+-independent and Ca2+-dependent signaling. Of the latter, elevated cytosolic-free Ca2+ concentration ([Ca2+]i) inactivates inward-rectifying K+ channels (IK,in) to prevent K+ uptake and activates Cl (anion) channels (ICl) at the plasma membrane to depolarize the membrane and engage K+ efflux through outward-rectifying K+ channels (IK,out; Keller et al., 1989; Blatt et al., 1990; Thiel et al., 1992; Lemtiri-Chlieh and MacRobbie, 1994). ABA, and most likely CO2 (Kim et al., 2010), elevate [Ca2+]i by facilitating Ca2+ entry at the plasma membrane to trigger Ca2+ release from endomembrane stores, a process often described as Ca2+-induced Ca2+ release (Grabov and Blatt, 1998, 1999). The hormone promotes Ca2+ influx by activating Ca2+ channels (ICa) at the plasma membrane, even in isolated membrane patches (Hamilton et al., 2000, 2001), which is linked to reactive oxygen species (Kwak et al., 2003; Wang et al., 2013). In parallel, cADP-ribose and nitric oxide promote endomembrane Ca2+ release and [Ca2+]i elevation (Leckie et al., 1998; Neill et al., 2002; Garcia-Mata et al., 2003; Blatt et al., 2007). Best estimates indicate that endomembrane release accounts for more than 95% of the Ca2+ entering the cytosol to raise [Ca2+]i (Chen et al., 2012; Wang et al., 2012).One feature of stomatal response to ABA, and indeed to a range of stimuli both hormonal as well as external, is its capacity for oscillations both in membrane voltage and [Ca2+]i. Guard cell [Ca2+]i at rest is typically around 100 to 200 nm, as it is in virtually all living cells. In response to ABA, [Ca2+]i can rise above 1 μm—and locally, most likely above 10 μm—often in cyclic transients of tens of seconds to several minutes’ duration in association with oscillations in voltage and stomatal closure (Gradmann et al., 1993; McAinsh et al., 1995; Webb et al., 1996; Grabov and Blatt, 1998, 1999; Staxen et al., 1999; Allen et al., 2001). In principle, cycling in voltage and [Ca2+]i arises as closure is accelerated with a controlled release of K+, Cl, and Mal2− from the guard cell and is subject to extracellular ion concentrations (Gradmann et al., 1993; Chen et al., 2012). However, it has been proposed that these, and similar oscillations in a variety of plant cell models, serve as physiological signals in their own right (McAinsh et al., 1995; Ehrhardt et al., 1996; Taylor et al., 1996). In support of such a signaling role, experiments designed to impose [Ca2+]i (and voltage) oscillations in guard cells have yielded an optimal frequency for closure with a period near 10 min (Allen et al., 2001). Nonetheless, the studies offer no mechanistic explanation for this optimum that could validate a causal role in signaling, and none has been forthcoming since. Here we address questions of how such optimal frequencies in [Ca2+]i oscillation arise and their relevance for stomatal closure, using quantitative systems analysis of guard cell transport and homeostasis. Our findings indicate that oscillations in voltage and [Ca2+]i, and their optima associated with stomatal closure, are most simply explained as emerging from the interactions between ion transporters that drive stomatal closure. Thus, we conclude that these oscillations do not control, but are a by-product of the transport that determines stomatal aperture.  相似文献   
8.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   
9.
Chinese hamster ovary (CHO) cells are conventionally used to generate therapeutic cell lines via random integration (RI), where desired transgenes are stably integrated into the genome. Targeted integration (TI) approaches, which involve integration of a transgene into a specific locus in the genome, are increasingly utilized for CHO cell line development (CLD) in recent years. None of these CLD approaches, however, are suitable for expression of toxic or difficult-to-express molecules, or for determining the underlying causes for poor expression of some molecules. Here we introduce a regulated target integration (RTI) system, where the desired transgene is integrated into a specific locus and transcribed under a regulated promoter. This system was used to determine the underlying causes of low protein expression for a difficult-to-express antibody (mAb-A). Interestingly, we observed that both antibody heavy chain (HC) and light chain (LC) subunits of mAb-A independently contributed to its low expression. Analysis of RTI cell lines also revealed that while mAb-A LC triggered accumulation of intracellular BiP, its HC displayed impaired degradation and clearance. RTI pools, generated by swapping the WT or point-mutant versions of difficult-to-express antibody HC and LC with that of an average antibody, were instrumental in understanding the contribution of HC and LC subunits to the overall antibody expression. The ability to selectively turn off the expression of a target transgene in an RTI system could help to directly link expression of a transgene to an observed adverse effect. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2772, 2019.  相似文献   
10.
基质有效性调节加拿大一枝黄花入侵对土壤呼吸的抑制作用 外来植物入侵不仅会降低河边近岸湿地生态系统植被多样性,而且会改变湿地生态系统的地下碳过程。外来入侵植物加拿大一枝黄花(Solidago canadensis L.)已广泛入侵我国东南部地区,但加拿大一枝黄花入侵对入侵地生态系统地下土壤碳循环过程的影响却知之甚少。本研究通过野外原位观测实验和温室模拟入侵实验,探究外来植物加拿大一枝黄花入侵对入侵地土壤呼吸的影响规律及其驱动因素。野 外原位观测实验开展于2018年7月21日至12月15日,期间每周测定样地土壤呼吸。温室模拟入侵实验开展于2019年7月15日至12月15日,期间每月1日与15日上午测定土壤呼吸、自养呼吸和异养呼吸。土壤呼吸、自养呼吸和异养呼吸通过静态箱结合深埋根系隔离法测定。野外原位观测实验和温室模拟入侵实验结果均显示,加拿大一枝黄花的入侵降低了土壤二氧化碳的排放通量。加拿大一枝黄花入侵对土壤呼吸的抑制作用可能归因于其入侵引起的土壤可利用底物质量与数量的变化,表明外来入侵植物加拿大一枝黄花可通过改变植物释放基质以及与本地植物和/或土壤微生物争夺土壤有效基质而影响土壤碳循环。这些研究结果对于评估外来入侵植物对入侵地地下碳动态的影响以及对全球变暖的贡献具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号