首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   17篇
  国内免费   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   18篇
  2012年   25篇
  2011年   15篇
  2010年   18篇
  2009年   11篇
  2008年   18篇
  2007年   17篇
  2006年   10篇
  2005年   10篇
  2004年   11篇
  2003年   7篇
  2002年   4篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
1.
2.
3.

Purpose

The coronary calcium score (CCS) predicts significant coronary artery disease (CAD) in the general population. While moderate chronic kidney disease (CKD) is associated with high CCS, the use of CCS to predict significant CAD in these patients is unknown.

Methods

A total of 704 patients underwent computed tomography coronary angiography for the assessment of CCS and CAD. Sixty-nine (10 %) patients had moderate CKD, defined by an estimated glomerular filtration rate (eGFR) between 30 and 59 mL/min/1.73m2, and the remaining patients were considered to be without significant CKD (eGFR?≥?60 mL/min/1.73m2).

Results

Patients with moderate CKD were older, had a higher CCS, and a higher prevalence of obstructive CAD than patients without significant CKD. Receiver-operator curve analysis showed that CCS predicted the presence of obstructive CAD in both patients with moderate CKD and those without significant CKD. In patients with moderate CKD, the optimal cut-off value of CCS to diagnose obstructive CAD was 140 (sensitivity 73 % and specificity of 70 %), and is 2.8 fold higher than in patients without significant CKD (cut-off value?=?50; sensitivity 75 % and specificity 75 %).

Conclusion

The present results demonstrate that CCS can predict obstructive CAD in patients with moderate CKD, although the optimal cut-off value is higher than in patients without significant CKD.  相似文献   
4.

Background

A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.

Results

Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.

Conclusions

We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.  相似文献   
5.
Soil-transmitted helminths are parasitic nematodes that inhabit the human intestine. These parasites, which include two hookworm species, Ancylostoma duodenale and Necator americanus, the whipworm Trichuris trichiura , and the large roundworm Ascaris lumbricoides , infect upwards of two billion people and are a major cause of disease burden in children and pregnant women. The challenge with treating these diseases is that poverty, safety, and inefficient public health policy have marginalized drug development and distribution to control infection in humans. Anthelmintics (anti-worm drugs) have historically been developed and tested for treatment of non-human parasitic nematodes that infect livestock and companion animals. Here we systematically compare the in vitro efficacy of all major anthelmintic classes currently used in human therapy (benzimidazoles, nicotinic acetylcholine receptor agonists, macrocyclic lactones, nitazoxanide) against species closely related to human parasitic nematodes-Ancylostoma ceylanicum, Trichuris muris , and Ascaris suum --- as well as a rodent parasitic nematode used in veterinary drug discovery, Heligmosomoides bakeri , and the free-living nematode Caenorhabditis elegans. Extensive in vitro data is complemented with single-dose in vivo data in three rodent models of parasitic diseases. We find that the effects of the drugs in vitro and in vivo can vary greatly among these nematode species, e.g., the efficacy of albendazole is strong on A. ceylanicum but weak on H . bakeri . Nonetheless, certain commonalities of the in vitro effects of the drugs can be seen, e.g., nitazoxanide consistently shows an all-or-nothing response. Our in vitro data suggest that further optimization of the clinical efficacy of some of these anthelmintics could be achieved by altering the treatment routine and/or dosing. Most importantly, our in vitro and in vivo data indicate that the hookworm A. ceylanicum is a particularly sensitive and useful model for anthelmintic studies and should be incorporated early on in drug screens for broad-spectrum human soil-transmitted helminth therapies.  相似文献   
6.
Cheung LW  Lee YF  Ng TW  Ching WK  Khoo US  Ng MK  Wong AS 《FEBS letters》2007,581(24):4668-4674
The range of BRCA1/BRCA2 gene mutations is diverse and the mechanism accounting for this heterogeneity is obscure. To gain insight into the endogenous mutational mechanisms involved, we evaluated the association of specific sequences (i.e. CpG/CpNpG motifs, homonucleotides, short repeats) and mutations within the genes. We classified 1337 published mutations in BRCA1 (1765 BRCA2 mutations) for each specific sequence, and employed computer simulation combined with mathematical calculations to estimate the true underlying tendency of mutation occurrence. Interestingly, we found no mutational bias to homonucleotides and repeats in deletions/insertions and substitutions but striking bias to CpG/CpNpG in substitutions in both genes. This suggests that methylation-dependent DNA alterations would be a major mechanism for mutagenesis.  相似文献   
7.
Catharanthus roseus has been well-known to contain indole alkaloids effective for treatment of diverse cancers. We examined the intracellular accumulation profiles of phenolic compounds in response to ectopic overexpression of tryptophan feedback-resistant anthranilate synthase holoenzyme (ASalphabeta) in C. roseus hairy roots. Among 13 phenolic compounds measured, 6 phenolic compounds were detected in late exponential phase ASalphabeta hairy roots. Uninduced and induced ASalphabeta hairy roots accumulated up to 1.2 and 4.5 mg/g DW over a 72-h period, respectively. Upon induction, in parallel with a rapid increase in tryptophan in the first 48 h, accumulation of phenolic compounds tended to increase to a maximum level (4.5 mg/g DW) at 48 h, after which phenolic levels decreased back to the uninduced level by 72 h. Naringin was a predominant form that comprised about 72% and 36% of the total content of phenolic compounds in the uninduced and induced lines, respectively. Upon induction, accumulation of catechin drastically increased with the highest level (3.6 mg/g) occurring at 48 h, whereas that of all others except for salicylic acid showed no statistical difference. Catechin is a final product of the flavonoid pathway, and thus metabolic flux into this pathway is transiently increased by overexpression of AS. Like catechin, salicylic acid is very sensitive to induction as it began to increase to 5-fold within 4 h of induction, but unlike catechin, no significant accumulation of salicylic acid was noted after 4 h of induction. The results suggest differential regulation of this particular biosynthesis branch within the phenolic pathway.  相似文献   
8.
Inducing cellular dedifferentiation has been proposed as a potential method for enhancing endogenous regeneration in mammals. Here we demonstrate that phenotypic and functional neurons derived from adult rat bone marrow stromal stem cells (MSCs) can be induced to undergo dedifferentiation, then proliferation and redifferentiation. In addition to morphological changes and expression of neuronal markers, neuron-specific enolase and neurofilament H, functional differentiation was monitored by intracellular Ca2+ mobilization in response to a ubiquitous neurotransmitter, 5-hydroxytryptamine (5-HT) at different stages. The neurons derived from rMSCs were found to have increased 5-HT response. This 5-HT sensitivity could be reversed to basal level similar to that found in rMSCs when neurons, up to 3 days after neuronal induction, were induced to undergo dedifferentiation. Increase in 5-HT-induced Ca2+ mobilization was again observed when rMSCs derived from dedifferentiated neurons were induced to redifferentiate into neurons again. Variation in 5-HT1A receptor immunoreactivity was observed in stem cells, differentiated neurons, dedifferentiated neurons and redifferentiation neurons, consistent with their respective 5-HT sensitivity. These results suggest that adult bone marrow-derived 5-HT sensitive neurons are capable of dedifferentiation, then proliferation and redifferentiation, indicating their plasticity and potential use in treatment of neural degenerative diseases.  相似文献   
9.
The effects of schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, and dimethyl diphenyl bicarboxylate (DDB), a synthetic intermediate of schisandrin C (also a dibenzocyclooctadiene derivative), on hepatic mitochondrial glutathione redox status in control and carbon tetrachloride (CCl4)-intoxicated mice were examined. Treating mice with Sch B or DDB at a daily oral dose of 1 mmol/kg for 3 d did not produce any significant alterations in plasma alanine aminotransferase (ALT) and sorbital dehydrogenase (SDH) activities. CCl4 treatment caused drastic increases in both plasma ALT and SDH activities in mice. Pretreating mice with Sch B or DDB at the same dosage regimen significantly suppressed the CCl4-induced increase in plasma ALT activity, with the inhibitory effect of Sch B being much more potent. Sch B, but not DDB, pretreatment could also decrease the plasma SDH activity in CCl4-intoxicated mice. The lowering of plasma SDH activity, indicative of hepatoprotection against CCl4 toxicity, by Sch B pretreatment was associated with an enhancement in hepatic mitochondrial glutathione redox status as well as an increase in mitochondrial glutathione reductase (mtGRD) activity in both non-CCl4 and CCl4-treated mice. DDB pretreatment, though enhancing both hepatic mitochondrial glutathione redox status and mtGRD activity in control animals, did not produce any beneficial effect in CCl4-treated mice. The difference in hepatoprotective action against CCl4 toxicity between Sch B and DDB may therefore be related to their ability to maintain hepatic mitochondrial glutathione redox status under oxidative stress condition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号