首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2022年   1篇
  2009年   1篇
  2000年   1篇
  1996年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Wild tomatoes (Solanum peruvianum) are important genomic resources for tomato research and breeding. Development of a foreign DNA-free clustered regularly interspaced short palindromic repeat (CRISPR)-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free CRISPR-Cas9 genome editing system based on an optimized protoplast regeneration protocol of S. peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6), and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProSys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-Ca2+-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type (WT) stock and pollination with WT pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the WT. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.

A DNA-free CRISPR-Cas9 genome editing tool based on an optimized protoplast regeneration protocol of wild tomato creates stable and inheritable diploid and tetraploid regenerants.  相似文献   
2.
Summary In order to establish a model system for introduction of foreign genes into papaya (Carica papaya L.) plants by Agrobacterium-mediated transformation, petioles from multishoots were used as explant source and bacterial neomycin phosphotransferase II (NPT II) gene and -glucuronidase (GUS) gene were used as a selection marker and a reporter, respectively. Cross sections of papaya petioles obtained from multishoots micropropagated in vitro were infected with A. tumefaciens LBA4404 containing NPTII and GUS genes and co-cultured for 2 d. The putative transformed calluses were identified by growth on the selective medium containing kanamycin and carbenicillin, and consequently regenerated to plants via somatic embryogenesis. Thirteen putative transgenic lines were obtained from a total of 415 petiole fragments treated. Strong GUS activity was detected in the selected putative transgenic calli or plants by fluorogenic assay. Western blot analysis using GUS antiserum confirmed that the GUS protein was expressed in putative transformed papaya cells and transgenic plants. The presence of the GUS gene in the papaya tissues was detected by PCR amplification coupled with Southern blot.  相似文献   
3.
Efficient rooting for establishment of papaya plantlets by micropropagation   总被引:2,自引:0,他引:2  
A low cost micropropagation protocol to produce high quality root systems which are easy and economical to acclimatize is essential for large-scale micropropagation of papaya (Carica papaya L.). In this study, individual shoots (>0.5 cm) with 23 leaves from in vitro papaya multiple shoots were cultured on MS agar medium containing 2.5 μM IBA under dark conditions for 1 week for root induction. They were then transferred to agar or vermiculite media, containing half strength MS medium, under aerated or non-aerated conditions, for root development. Rooting percentage of shoots cultured for 2 weeks in aerated vermiculite was 94.5%, compared with 90.0% in non-aerated vermiculite, 71.1% in aerated agar, and 62.2% in non-aerated agar. Shoots with roots were acclimated in vermiculite under 100% RH for 1 week and then under ambient conditions for 2 weeks in a temperature-controlled growth chamber (28 °C). The survival rates of the plantlets were 94.5% from aerated vermiculite, 87.8% from non-aerated vermiculite, 42.2% from aerated agar, and 35.6% from non-aerated agar. Thus, root induction in low-concentration IBA agar medium followed by root development in vermiculite containing half strength MS medium under aerated conditions results in efficient rooting of in vitro papaya shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
Summary Generation of transgenic papaya (Carica papaya L.) has been hampered by the low rates of transformation achieved by conventionalAgrobacterium infection or microprojectile bombardment. We describe an efficientAgrobacterium-mediated transformation method based on wounding of cultured embryogenic tissues with carborundum in liquid phase. Embryogenic tissues were obtained from cultured immature zygotic embryos collected 75–90 days after pollination. The expressible coat protein (CP) gene of a Taiwan strain of papaya ringspot virus (PRSV) was constructed in a Ti binary vector pBGCP, which contained the NPT-II gene as a selection marker. The embryogenic tissues were vortexed with 600 mesh carborundum in sterile distilled water for 1 min before treating with the disarmedA. tumefaciens containing the pBGCP. Transformed cells were cultured on kanamycin-free medium containing 2,4-D and carbenicillin for 2–3 weeks and then on the kanamycin medium for 3–4 months. The developed somatic embryos were transferred to the medium containing NAA, BA and kanamycin and subsequently regenerated into normal-appearing plants. Presence of the PRSV CP gene in the putative transgenic lines was detected by PCR and the expression of the CP was verified by Western blotting. The transgene was nuclearly inherited as revealed by segregation analysis in the backcrossed R1 progeny. From five independent experiments, the average successful rate of transformation was 15.9% of the zygotic embryos treated (52 transgenic somatic embryo clusters out of 327 zygotic embryos treated), about 10–100 times higher than the available methods previously reported. Thus, wounding highly regenerable differentiating tissues by carborundum vortexing provides a simple and efficient way for papaya transformation mediated byAgrobacterium.  相似文献   
5.
The commercially valuable transgenic papaya lines carrying the coat protein (CP) gene of Papaya ringspot virus (PRSV) and conferring virus resistance have been developed in Hawaii and Taiwan in the past decade. Prompt and sensitive protocols for transgene-specific and event-specific detections are essential for traceability of these lines to fulfill regulatory requirement in EU and some Asian countries. Here, based on polymerase chain reaction (PCR) approaches, we demonstrated different detection protocols for characterization of PRSV CP-transgenic papaya lines. Transgene-specific products were amplified using different specific primer pairs targeting the sequences of the promoter, the terminator, the selection marker, and the transgene, and the region across the promoter and transgene. Moreover, after cloning and sequencing the DNA fragments amplified by adaptor ligation-PCR, the junctions between plant genomic DNA and the T-DNA insert were elucidated. The event-specific method targeting the flanking sequences and the transgene was developed for identification of a specific transgenic line. The PCR patterns using primers designed from the left or the right flanking DNA sequence of the transgene insert in three selected transgenic papaya lines were specific and reproducible. Our results also verified that PRSV CP transgene is integrated into transgenic papaya genome in different loci. The copy number of inserted T-DNA was further confirmed by real-time PCR. The event-specific molecular markers developed in this investigation are crucial for regulatory requirement in some countries and intellectual protection. Also, these markers are helpful for prompt screening of a homozygote-transgenic progeny in the breeding program.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号