首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21066篇
  免费   2127篇
  国内免费   2212篇
  25405篇
  2024年   85篇
  2023年   318篇
  2022年   651篇
  2021年   1045篇
  2020年   748篇
  2019年   929篇
  2018年   804篇
  2017年   628篇
  2016年   871篇
  2015年   1311篇
  2014年   1508篇
  2013年   1618篇
  2012年   1878篇
  2011年   1738篇
  2010年   1120篇
  2009年   998篇
  2008年   1163篇
  2007年   1031篇
  2006年   983篇
  2005年   838篇
  2004年   782篇
  2003年   744篇
  2002年   642篇
  2001年   404篇
  2000年   353篇
  1999年   287篇
  1998年   163篇
  1997年   149篇
  1996年   132篇
  1995年   98篇
  1994年   140篇
  1993年   94篇
  1992年   119篇
  1991年   111篇
  1990年   87篇
  1989年   90篇
  1988年   87篇
  1987年   77篇
  1986年   64篇
  1985年   87篇
  1984年   56篇
  1983年   46篇
  1982年   38篇
  1981年   23篇
  1979年   35篇
  1978年   25篇
  1977年   20篇
  1975年   21篇
  1974年   22篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We released seeds of two sympatric tree species, Corylus mandshurica (seed with thinner seed hull, higher nutrition) and C. heterophylla (seeds with thicker seed hull, lower nutrition) in the masting year of C. mandshurica in 2008, and C. heterophylla in 2009, respectively, to investigate how seed masting of the two sympatric Corylus species affects seed removal and dispersal fitness of the two species differently at both intra- and inter-specific levels. At intra-specific level, the authors found mast seeding of both C. mandshurica and C. heterophylla significantly reduced seed removal, seed consumption, but increased seed dispersal distance and seed dispersal fitness of the released seeds. Mast seeding of C. mandshurica increased seed caching of C. mandshurica. At inter-specific level, the authors found mast seeding of C. mandshurica reduced seed removal of C. heterophylla, but mast seeding of C. heterophylla did not significantly reduce seed removal of C. mandshurica. Mast seeding of C. mandshurica reduced seed consumption of C. heterophylla, while mast seeding of C. heterophylla reduced seed consumption of C. mandshurica. We found mast seeding of C. mandshurica significantly reduced seed dispersal distance of C. heterophylla, while mast seeding of C. heterophylla significantly increased seed dispersal distance of C. mandshurica. We found that mast seeding of C. mandshurica significantly increased seed dispersal fitness of C. heterophylla, while mast seeding of C. heterophylla did not significantly increase seed dispersal fitness of C. mandshurica. More studies are needed to reveal the ecological consequences of mast seeding at inter-specific or community-level. Seed traits may attribute the differences of mast seeding at inter-specific level. Because seeds with thinner seed hull and higher nutrition were more harvested and eaten by rodents, mast seeding of C. mandshurica might have reduced seed removal and seed consumption, but increased dispersal fitness of C. heterophylla (seeds with thicker seed hull, lower nutrition). Therefore, synchrony among species is, or is not, selectively beneficial to the focus species depends on seed traits which determine gains from mast seeding at inter-specific level.  相似文献   
2.
C T Grubmeyer  K W Chu  S Insinga 《Biochemistry》1987,26(12):3369-3373
Salmonella typhimurium histidinol dehydrogenase produces histidine from the amino alcohol histidinol by two sequential NAD-linked oxidations which form and oxidize a stable enzyme-bound histidinaldehyde intermediate. The enzyme was found to catalyze the exchange of 3H between histidinol and [4(R)-3H]NADH and between NAD and [4(S)-3H]NADH. The latter reaction proceeded at rates greater than kcat for the net reaction and was about 3-fold faster than the former. Histidine did not support an NAD/NADH exchange, demonstrating kinetic irreversibility in the second half-reaction. Specific activity measurements on [3H]histidinol produced during the histidinol/NADH exchange reaction showed that only a single hydrogen was exchanged between the two reactants, demonstrating that under the conditions employed this exchange reaction arises only from the reversal of the alcohol dehydrogenase step and not the aldehyde dehydrogenase reaction. The kinetics of the NAD/NADH exchange reaction demonstrated a hyperbolic dependence on the concentration of NAD and NADH when the two were present in a 1:2 molar ratio. The histidinol/NADH exchange showed severe inhibition by high NAD and NADH under the same conditions, indicating that histidinol cannot dissociate directly from the ternary enzyme-NAD-histidinol complex; in other words, the binding of substrate is ordered with histidinol leading. Binding studies indicated that [3H]histidinol bound to 1.7 sites on the dimeric enzyme (0.85 site/monomer) with a KD of 10 microM. No binding of [3H]NAD or [3H]NADH was detected. The nucleotides could, however, displace histidinol dehydrogenase from Cibacron Blue-agarose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
4.
5.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   
6.
Tissue plasminogen activator (tPA) has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg) into plasmin. In this study, using plasminogen knockout (Plg-/-) mice and their Plg-native littermates (Plg+/+), we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group) were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo). A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticospinal tract (CST). Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p<0.01). BDA-positive axonal density of the CST originating from the contralesional cortex in the denervated side of the cervical gray matter was significantly reduced in Plg-/- mice compared with Plg+/+ mice (p<0.05). The behavioral outcome was highly correlated with the midline-crossing CST axonal density (R2>0.82, p<0.01). Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.  相似文献   
7.
The paracrystalline surface protein array of the pathogenic bacterium Aeromonas salmonicida is a primary virulence factor with novel binding capabilities. The species-specific structural gene (vapA) for this array protein (A-protein) was cloned into lambda gt11 but was unstable when expressed in Escherichia coli, undergoing an 816-base pair deletion due to a 21-base pair direct repeat within the gene. However, the gene was stable in cosmid pLA2917 as long as expression was poor. A-protein was located in the cytoplasmic, inner membrane and periplasmic fractions in E. coli. The DNA sequence revealed a 1,506-base pair open reading frame encoding a protein consisting of a 21-amino acid signal peptide, and a 481-residue 50,778 molecular weight protein containing considerable secondary structure. When assembled into a paracrystalline protein array on Aeromonas the cell surface A-protein was totally refractile to cleavage by trypsin, but became trypsin sensitive when disassembled. Trypsin cleavage of the isolated protein provided evidence that both the NH2- and COOH-terminal regions form distinct structural domains, consistent with three-dimensional ultrastructural evidence. The NH2-terminal 274-residue domain remained refractile to trypsin activity. This segment connects by a trypsin and CNBr-sensitive 78-residue linker region to a COOH-terminal 129-residue fragment which could apparently refold into a partially trypsin-resistant structure after cleavage at residue 323.  相似文献   
8.
Previous studies have identified a lymphokine, termed Ts differentiation factor (TsDF), in primary MLR supernatants that induces effector function of alloantigen-primed MLR-Ts. The present report describes constitutive production of TsDF by the murine thymoma BW5147, and its use to analyze alloantigen and TsDF requirements for MLR-Ts activation to TsF production. Serum-free supernatants of BW5147 restored the capacity of MLR-TsF production to alloantigen-primed MLR-Ts cultured with glutaraldehyde-fixed allogeneic stimulator cells, and were not themselves directly suppressive in the MLR assay. BW5147 supernatant induced MLR-TsF production from primed L3T4-Ly2+ MLR-Ts in the absence of concomitant proliferation, suggesting that the function of BW5147 supernatant, like that of MLR-derived TsDF, is a differentiative rather than a proliferative one, and is required for the synthesis or release of TsF. The differentiative activity of BW5147 supernatant was associated with a molecular species of approximately 14,500 m.w. by HPLC fractionation and was expressed independently of detectable IL 2, IL 3, IFN-gamma, and IL 1. The functional activity of BW5147 supernatant has therefore been provisionally designated BW5147-derived Ts differentiative factor, or BW-TsDF. By using BW-TsDF, it was demonstrated that MLR-Ts fail to respond to TsDF in the absence of, or preceding, reexposure to priming alloantigen. Instead, alloantigen binding by primed MLR-Ts appears to create a transient state of TsDF responsiveness. Primed MLR-Ts were fully sensitive to delayed addition of TsDF for approximately 12 hr after reexposure to alloantigen, but became TsDF-unresponsive within 24 to 36 hr. MLR-Ts cultured alone for 36 hr were fully responsive to the combined addition of TsDF and alloantigen. Thus, MLR-Ts activation to TsF release requires the sequential events of specific alloantigen binding, which induces a TsDF-responsive state, followed by interaction with TsDF. The transience of induced TsDF responsiveness suggests a precise mechanism for control of antigen-initiated Ts activation to effector function.  相似文献   
9.
Chinese hamster ovary cells were heated at 45.5 or 43.0 degrees C at acidic pH (6.7) or normal physiological pH (7.4) to have a survival of 10(-3). The weak acid, 5,5-dimethyl-2,4-oxazolidinedione-2-14C), was used to measure the intracellular pH (pHi) both during and following hyperthermia. Tritiated water and a Particle Data machine were used to measure cellular volume as well. With 99.9% of the cell population destined to die clonogenically, the physiologically alive cells, as determined by the exclusion of trypan blue dye, maintained their pH differential between pHe and pHi as well as unheated cells. Furthermore, the cell's ability to regulate its pHi in response to changes in pHe was not affected by the same hyperthermic treatment. However, cellular volume decreased by 15-30% by 5 h after the onset of heat treatment. We conclude that heat does not perturb the cellular regulation of intracellular H+ concentration. Therefore, there is no thermal damage to the pHi-regulatory mechanism that could be responsible for either heat-induced reproductive cell death or low pH sensitization of heat killing.  相似文献   
10.
High methanol concentrations have a negative effect on the growth rate and the biomass yield of growth transients induced by methanol pulses in continuous cultures of Methylomonas L3. The physiological basis of this effect is investigated by measuring the effect of the methanol pulse on the cell energy charge (EC) and ATP, ADP, and AMP concentrations, and by comparing the results of the pulse transients against an unstructured model. The methanol pulse is shown to lead to increased values of the cell EC and ATP concentration, and thus, inhibition and reduced availability of biosynthetic energy are excluded as causes of inhibition. When the biomass and methanol profiles of the transient experiments are compared in phase-plane diagrams against computer simulations based on the model, satisfactory agreement between experimental data and model predictions is found in single-substrate, high-dilution-rate experiments. Conversely, poor agreement between experimental data and simulation results indicates a more severe growth inhibition than the model predicts at low dilution rates and a less severe one in mixed-substrate experiments. Based on these findings and other relevant physiological information, we propose that the large variations in the negative effect of methanol on growth result from the fact that cells accumulate methanol to widely different concentrations depending on their physiological state. In their effort to detoxify from the high intracellular methanol and formaldehyde concentrations, cells oxidize considerably more methanol than they can incorporate into biomass. This leads to a useless ATP surplus, which the cells must hydrolyze without doing any useful biosynthetic work, and this results in lower biomass yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号