首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The optical properties of the DNA complexes with divalent platinum compounds of the cis-diamine type differing both in the nature of anionic and neutral ligands and in the spatial arrangement about the platinum atom were studied. The platinum compounds cis-[Pt(NH3)2Cl2], [Pt(en)Cl2], [Pt(tetrameen)Cl2], cis-[Pt(NH3)2NO2Cl], and cis-[PtNH3(Bz)Cl2] at small values of r (r is the molar ratio of a platinum compound to DNA nucleotides in the reaction mixture) were found to induce an increase in the amplitude of the positive band in the circular dichroic (CD) spectrum of linear DNA. All the compounds listed except cis-[Pt(NH3)2NO2Cl] caused a sharp decrease of the amplitude of the negative band in the CD spectrum of a liquid crystalline microphase of DNA formed in solution in the presence of poly(ethylene glycol). All these platinum compounds (except [Pt(tetrameen)Cl2]) exhibit biological (antimitotic, antitumour, etc.) activity. The platinum compounds trans-[Pt(NH3)Cl2], trans-[Pt(NH3)2NO2Cl], cis-[PtNH3PyCl2], cis-[Pt(NH3)2(NO2)2], and [Pt(NH3)3Cl]Cl exhibiting a low (if any) biological activity, either induced a decrease of the amplitude of the positive band in the CD spectrum of linear DNA, or did not affect the CD spectrum at all. The effect of these platinum compounds on the CD spectrum of the liquid crystalline microphase of DNA was either weak or absent. It is assumed that the specific biological action of platinum compounds of the cis-diamine type is determined by the polydentate binding to DNA: in addition to the cis-bidentate covalent binding of platinum to DNA nitrogen bases, a hydrogen bond formation between the DNA and cis-amino ligands occurs by means of protons at nitrogen atoms.  相似文献   
2.
The effects of small size (~2 nm) gold nanoparticles on the properties of particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules were analyzed. It has been shown that gold nanoparticles induce two different processes. First, they facilitate reorganization of the spatial cholesteric structure of dispersion particles to nematic one. This process is accompanied by the fast decrease in the amplitude of abnormal band in the CD spectrum. Second, they can form ensembles consisting of gold nanoparticles. This process is accompanied by the development and displacement of surface plasmon resonance band in the visible region of the absorption spectrum. The appearance of this band is analyzed by considering two different models of the formation of ensembles consisting of gold nanoparticles. By small-angle X-ray scattering we performed structural analysis of phases formed by DNA cholesteric liquid-crystalline dispersion particles treated with gold nanoparticles. As a result of this study it was possible to prove the formation of linear clusters of gold nanoparticles in the “free space” between the adjacent DNA molecules fixed in the quasinematic layers of liquid-crystalline particles. It has been hypothesized that the formation of linear clusters of gold nanoparticles is most likely related to DNA molecules, ordered in the spatial structure of quasinematic layers, and the toxicity of these nanoparticles in biological systems hypothesized.  相似文献   
3.
Right-handed helical double-stranded DNA molecules were shown to interact with chitosans to form under certain conditions (chitosan molecular weight, content of amino groups, distance between amino groups, ionic strength and pH of solution) cholesteric liquid-crystalline dispersions characterized by abnormal positive band in CD spectrum in the absorption region of DNA nitrogen bases. Conditions were found for the appearance of intense negative band in CD spectrum upon dispersion formation. In some cases, no intense band appeared in CD spectrum in spite of dispersion formation. These results indicate not only the multiple forms of liquid-crystalline dispersions of DNA–chitosan complexes but also a possibility to control the spatial properties of these complexes. The multiplicity of liquid-crystalline forms of DNA–chitosan complexes was attempted to explain by the effect of character of dipoles distribution over the surface of DNA molecules on the sense of spatial twist of cholesteric liquid crystals resulting from molecules of the complexes.  相似文献   
4.
5.
Linear double-stranded DNA molecules interact with positively charged polyconidine molecules in aqueous salt solutions to yield liquid-crystalline dispersions (LCDs) with a mean particle diameter of ~6000 Å. The packing density of (DNA-polycation) complexes differs among LCD particles formed at different ionic strengths. X-ray data on the liquid-crystalline phases of (DNA-polyconidine) complexes formed under different conditions were compared with a phase diagram, reflecting polymorphism of liquid crystals of linear double-stranded DNA. It was shown that LCD was hexagonal at 0.15 M ≤ C NaCl < 0.4 M and cholesteric at 0.4 M ≤ C NaCl < 0.55 M. Cholesteric LCD displayed abnormal optical activity in the circular dichroism spectrum. A similar situation was observed with poly(2,5-ionene), another polycation differing in chemical structure from polyconidine. The results demonstrated structural polymorphism of (DNA-polycation) LCDs. It was assumed that the packing mode of (DNA-polycation) complexes in LCD particles can be regulated by changing NaCl concentration. The mechanism generating the cholesteric liquid-crystalline state of DNA in a narrow range of NaCl concentrations is discussed.  相似文献   
6.
We describe formation of a molecular construction that consists of double-stranded molecules of nucleic acids (or synthetic polynucleotides) located at a distance of 30–50 Å in the spatial structure of particles of their cholesteric liquid-crystalline dispersion and crosslinked by polymeric chelate bridges. The resulting superstructure, which possesses peculiar physicochemical properties, can be used as an integral biosensor whose properties depend on temperature, the presence of chemical or biologically active compounds of different nature, etc.  相似文献   
7.
We have investigated the X-ray and optical properties (CD spectra and polarization microscopy) of liquid-crystalline phases and dispersions formed on pretreatment of low molecular weight DNA with the platinum(II) coordination complexes, cis-diammine-dichloroplatinum(II) (DDP), 2,2'-bipyridinedichloroplatinum(II) (1) and 2,2'-bipyridineethylenediammineplatinum(II) (2). It is demonstrated that the platination of DNA leads to the ordering of neighbouring molecules of DNA in liquid-crystalline phases being diminished. The intense bands observed in the CD spectra of liquid-crystalline dispersions prepared from DNA pretreated with 1 or 2 can be used to determine the orientation of the latter compounds with respect to the helical axis of the DNA and to detect distortions in the secondary structure of DNA. The possible causes of the appearance of the intense bands in the CD spectra of liquid-crystalline phases and alterations in the manner of packing of the molecules of DNA within them are discussed.  相似文献   
8.
The changes in the structure and activity of a soil microbial community caused by addition of moderate and high rates of the mineral nitrogen fertilizer (KNO3) were studied in a laboratory incubation experiment. The structure of the microbial community was evaluated from the phospholipid fatty acid (PLFA) profile; specific growth rate of the microorganisms was determined by the method of the kinetics of substrate-induced respiration; the total pool of microbial carbon was estimated by the fumigation-extraction method. The amounts of nitrogen fertilizer applied in three treatments of the experiment were 0 (control), 100, and 2000 ??g N/g soil. Even in the absence of additional sources of organic carbon, a considerable portion of the added 15N (up to 74%) was immobilized. No significant increase in the amount of microbial carbon was observed during incubation. The specific growth rate of the microbial community in soil supplemented with glucose decreased twofold after addition of 2000 ??g N/g soil. In this treatment, the ratio of cyclic fatty acids to their monoenoic precursors also increased, indicating the adaptation of microbial cells to extremely high amounts of nitrogen fertilizer. Moreover, considerable changes in the structure of the soil microbial community, such as an increase in the ratio of fungalto bacterial markers and a decrease in the ratio between PLFA of gram-positive and gram-negative bacteria, were observed in the treatment with addition of 2000 ??g N/g soil. Our data clearly indicate that mineral nitrogen fertilization of soil under carbon limitation has a pronounced impact on the structure and activity of soil microbial communities.  相似文献   
9.
Liquid-crystalline dispersions of nucleic acid–chitosan complexes (NA–chitosan) possess optical and X-ray diffraction properties different from those of classical cholesterics. It is possible that positive charge distribution (distance between charges, chitosan conformation, etc.) in the chitosan polymeric chain interacting with NA is a factor controlling the spatial structure of the resulting dispersions.  相似文献   
10.
We describe the formation and properties of nanoconstruction that consists of the double-stranded DNA molecules located at distance of 35-50 A in the spatial structure of particles of their cholesteric liquid-crystalline dispersions and cross-linked by artificial nanobridges. The resulting nanostructures possess the peculiar spatial and optical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号