首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12907篇
  免费   1498篇
  国内免费   114篇
  2022年   124篇
  2021年   263篇
  2020年   161篇
  2019年   184篇
  2018年   210篇
  2017年   165篇
  2016年   273篇
  2015年   500篇
  2014年   534篇
  2013年   670篇
  2012年   806篇
  2011年   752篇
  2010年   482篇
  2009年   388篇
  2008年   621篇
  2007年   511篇
  2006年   517篇
  2005年   449篇
  2004年   448篇
  2003年   418篇
  2002年   387篇
  2001年   325篇
  2000年   328篇
  1999年   285篇
  1998年   181篇
  1997年   151篇
  1996年   135篇
  1995年   131篇
  1994年   133篇
  1993年   129篇
  1992年   212篇
  1991年   238篇
  1990年   240篇
  1989年   193篇
  1988年   196篇
  1987年   187篇
  1986年   182篇
  1985年   163篇
  1984年   166篇
  1983年   131篇
  1982年   121篇
  1981年   121篇
  1980年   113篇
  1979年   138篇
  1978年   124篇
  1977年   102篇
  1974年   104篇
  1973年   102篇
  1972年   89篇
  1971年   89篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The role of DNA sequence in determining nucleosome positions in vivo was investigated by comparing the positions adopted by nucleosomes reconstituted on a yeast plasmid in vitro using purified core histones with those in native chromatin containing the same DNA, described previously. Nucleosomes were reconstituted on a 2.5 kilobase pair DNA sequence containing the yeast TRP1ARS1 plasmid with CUP1 as an insert (TAC-DNA). Multiple, alternative, overlapping nucleosome positions were mapped on TAC-DNA. For the 58 positioned nucleosomes identified, the relative positioning strengths and the stabilities to salt and temperature were determined. These positions were, with a few exceptions, identical to those observed in native, remodeled TAC chromatin containing an activated CUP1 gene. Only some of these positions are utilized in native, unremodeled chromatin. These observations suggest that DNA sequence is likely to play a very important role in positioning nucleosomes in vivo. We suggest that events occurring in yeast CUP1 chromatin determine which positions are occupied in vivo and when they are occupied.  相似文献   
2.
This study targeted the development of a novel microarray tool to allow rapid determination of the expression levels of 58 different tyrosine kinase (tk) genes in small tumor samples. The goals were to define a reference probe for multi-sample comparison and to investigate the variability and reproducibility of the image acquisition and RT-PCR procedures. The small number of tk genes on our arrays enabled us to define a reference probe by artificially mixing all genes on the arrays. Such a probe provided contrast reference for comparative hybridization of control and sample DNA and enabled cross-comparison of more than two samples against one another. Comparison of signals generated from multiple scanning eliminated the concern of photo bleaching and scanner intrinsic noise. Tests performed with breast, thyroid, and prostate cancer samples yielded distinctive patterns and suggest the feasibility of our approach. Repeated experiments indicated reproducibility of such arrays. Up- or downregulated genes identified by this rapid screening are now being investigated with techniques such as in situ hybridization.  相似文献   
3.
J Molnar  M Z Lai  G E Siefring  L Lorand 《Biochemistry》1983,22(25):5704-5709
Plasma fibronectin is one of the largest plasma proteins (Mr approximately 440 000), comprising two approximately equal polypeptide chains which are held together by a disulfide linkage near the C-terminal end of the molecule. The binding of gelatinized latex beads to liver slices as well as the internalization of these particles by macrophages, in the presence of heparin, is greatly enhanced by fibronectin. The question as to whether the entire covalent structure of fibronectin was necessary for opsonizing activity was approached by limited proteolytic degradations of the molecule. Patterns of controlled digestion with trypsin, cathepsin D, Staphylococcus aureus protease, and plasmin all indicate that the minimal unit necessary for retention of opsonic activity is some large (Mr 200 000 and 190 000) single-chain entity. Treatment with plasmin proved to be the most reliable procedure for generating the active split product which could be readily separated from the inactive, disulfide-containing C-terminal fragment. Incorporation of dansylcadaverine into plasma fibronectin (3.5 mol/mol of protein) by fibronoligase (coagulation factor XIIIa) did not affect the opsonic activity of the protein.  相似文献   
4.
Okadaic acid (OA), a protein phosphatase inhibitor, was found to induce hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. The process was dose dependent. Vimentin phosphorylation was initially enhanced by 400 nM OA in 30 min and reached maximal level (about 26-fold) when cells were treated with 400 nM OA for 90 min. Upon removal of OA, dephosphorylation of the hyperphosphorylated vimentin was observed and the levels of phosphorylation returned to that of the controls after the cells recovered under normal growing conditions for 11 h. The phosphorylation and dephosphorylation of vimentin induced by OA concomitantly resulted in reversible reorganization of vimentin filaments and alteration of cell morphology. Cells rounded up as they were entering mitosis in the presence of OA and returned to normal appearance after 11 h of recovery. Immuno-staining with anti-vimentin antibody revealed that vimentin filaments were disassembled and clustered around the nucleus when the cells were treated with OA but subsequently returned to the filamentous states when OA was removed. Two-dimensional electrophoresis analysis further revealed that hyperphosphorylation of vimentin generated at least seven isoforms having different isoelectric points. Furthermore, the enhanced vimentin phosphorylation was accompanied by changes in the detergent-solubility of the protein. In untreated cells, the detergent-soluble and -insoluble vimentins were of equal amounts but the solubility could be increased when vimentins were hyperphosphorylated in the presence of OA. Taken together, the results indicated that OA could be involved in reversible hyperphosphorylation and reorganization of vimentin intermediate filaments, which may play an important role in the structure-function regulation of cytoskeleton in the cell.  相似文献   
5.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   
6.
7.
We developed a unified model of the GRK-mediated β2 adrenergic receptor (β2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the β2AR; (3) β2AR internalization; (4) recycling of the β2AR post isoproterenol treatment; (5) β2AR desensitization; and (6) β2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation “seen” by the β2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the β2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the β2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the β2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved.  相似文献   
8.
9.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号