首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2007年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
黄嘌呤氧化还原酶的结构、功能和作用   总被引:6,自引:0,他引:6  
黄嘌呤氧化还原酶(XOR)参与人体内的嘌呤代谢,并且是这一代谢过程的限速酶。其终产物是活性氧(包括OH·、H2O2和O2-)和尿酸。这两种产物参与体内多种生理活动。从XOR基因的结构、XOR蛋白的分子结构和基本功能、控制XOR活性的多个环节以及XOR的两种催化产物活性氧和尿酸在生理和病理情况下的功能及机制进行了总结,以期对XOR的发现、研究历史及现状和有待解决的问题有一个系统的了解。  相似文献   
2.
Peroxisome proliferator-activated receptor γ (PPARγ) and its ligands have profound effects on glucose homeostasis, cardiovascular diseases, and bone metabolism. To explore the pathophysiological roles of PPARγ in diabetes with concomitant vascular calcification, we investigated changes in PPARγ expression and the effect of the PPARγ ligands troglitazone and rosiglitazone on vascular smooth muscle cell (VSMC) calcification induced by high glucose (HG, 25 mmol/L). Compared with low glucose, HG-induced VSMC calcification, and PPARγ mRNA, protein level was decreased. Troglitazone and rosiglitazone treatment markedly attenuated the VSMC calcification, whereas PPARγ antagonist GW9662 abolished the effect of rosiglitazone on calcification. Pretreatment of VSMCs with rosiglitazone, but not troglitazone, restored the loss of lineage marker expression: the protein levels of α-actin and SM-22α were increased 52 % (P < 0.05) and 53.1 % (P < 0.01), respectively, as compared with HG alone. Troglitazone and rosiglitazone reversed the change in bone-related protein expression induced by HG: decreased the mRNA levels of osteocalcin, bone morphogenetic protein 2 (BMP2), and core binding factor α 1 (Cbfα-1) by 26.9 % (P > 0.05), 50.0 % (P < 0.01), and 24.4 % (P < 0.05), and 48.4 % (P < 0.05), 41.4 % (P < 0.01) and 56.2 % (P < 0.05), respectively, and increased that of matrix Gla protein (MGP) 84.2 % (P < 0.01) and 70.0 %, respectively (P < 0.05), as compared with HG alone. GW9662 abolished the effect of rosiglitazone on Cbfα-1 and MGP expression. PPARγ ligands can inhibit VSMCs calcification induced by high glucose.  相似文献   
3.
十字花科芸苔属甘蓝型油菜(Brassica napus)在角果发育成熟过程中,因角果开裂种子散落引起产量损失最低达20%左右,最高可达50%左右。模式植物拟南芥在角果形态和开裂机制方面与甘蓝型油菜具有相似性,角果开裂主要与果瓣、胎座框和果瓣边缘层的细胞发育有关。通过对拟南芥角果发育期间基因对果瓣、胎座框和果瓣边缘层的识别和发育进行综述,明确了拟南芥角果发育和开裂的基因调控机制,提出了从模式植物到大田作物甘蓝型油菜抗裂角育种的新策略。  相似文献   
4.
AD Chen  XQ Xiong  XB Gan  F Zhang  YB Zhou  XY Gao  Y Han 《PloS one》2012,7(7):e40748

Background

Cardiac sympathetic afferent reflex (CSAR) is a positive-feedback, sympathoexcitatory reflex. Paraventricular nucleus (PVN) is an important component of the central neurocircuitry of the CSAR. The present study is designed to determine whether endothelin-1 (ET-1) in the PVN modulates the CSAR and sympathetic activity, and whether superoxide anions are involved in modulating the effects of ET-1 in the PVN in rats.

Methodology/Principal Findings

In anaesthetized Sprague–Dawley rats with cervical vagotomy and sinoaortic denervation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the responses of the RSNA and MAP to epicardial application of capsaicin. Microinjection of ET-1 into the bilateral PVN dose-dependently enhanced the CSAR, increased the baseline RSNA and MAP. The effects of ET-1 were blocked by PVN pretreatment with the ETA receptor antagonist BQ-123. However, BQ-123 alone had no significant effects on the CSAR, the baseline RSNA and MAP. Bilateral PVN pretreatment with either superoxide anion scavenger tempol or polyethylene glycol-superoxide dismutase (PEG-SOD) inhibited the effects of ET-1 on the CSAR, RSNA and MAP. Microinjection of ET-1 into the PVN increased the superoxide anion level in the PVN, which was abolished by PVN pretreatment with BQ-123. Epicardial application of capsaicin increased superoxide anion level in PVN which was further enhanced by PVN pretreatment with ET-1.

Conclusions

Exogenous activation of ETA receptors with ET-1 in the PVN enhances the CSAR, increases RSNA and MAP. Superoxide anions in PVN are involved in the effects of ET-1 in the PVN.  相似文献   
5.

Background and Aim

Paraventricular nucleus (PVN) of hypothalamus is an important central component in modulating adipose afferent reflex (AAR). Melanocortin receptors (MC3/4Rs) expressions are found in the hypothalamic PVN. This study was designed to determine the roles of MC3/4Rs in the PVN in modulating the AAR and its downstream signaling pathway in normal rats.

Methodology/Principal Findings

Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats. AAR was evaluated using RSNA and MAP responses to capsaicin injection into the inguinal white adipose tissue (iWAT). Microinjection of the MC3/4R agonist melanotan II (MTII) into the PVN enhanced the AAR. The MC3/4R antagonist SHU9119 or MC4R antagonist HS024 attenuated the AAR and abolished MTII-induced AAR response. The adenylate cyclase (AC) inhibitor SQ22536 or the protein kinase A (PKA) inhibitor Rp-cAMP attenuated the AAR and the effect of MTII on the AAR was abolished by pretreatment with SQ22536 or Rp-cAMP in the PVN. Furthermore, both PVN microinjection of MTII and iWAT injection of capsaicin increased the cAMP level in the PVN. SHU9119 in the PVN abolished the increase in cAMP level which induced by iWAT injection of capsaicin.

Conclusion

The activation of MC4Rs rather than MC3Rs enhances the AAR, and a cAMP-PKA pathway is involved in the effects of MC4Rs in the PVN.  相似文献   
6.

Background and Aim

Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats.

Methodology/Principal Findings

Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats.

Conclusion

IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.  相似文献   
7.

A phosphate solubilizing bacterium ZB was isolated from the rhizosphere soil of Araucaria, which falls into the species Pantoea agglomerans. Optimization for phosphate solubilization by strain ZB was performed. At optimum culture conditions, the isolate showed great ability of solubilizing different insoluble inorganic phosphate sources viz. Ca3(PO4)2 (TCP), Hydroxyapatite (HP), CaHPO4, AlPO4, FePO4 along with rock phosphates (RPs). Inoculation with planktonic cells was found to enhance dissolved phosphorous as compared to that achieved by symplasma inoculation. Besides inoculation with different status of cells, pre-incubation could also exert a great effect on phosphate solubilization ability of P. agglomerans. When isolate ZB was cultured with glucose as carbon sources, phosphorous was more efficiently dissolved from HP and RP without pre-incubation in comparison to that obtained with pre-cultivation. Pre-cultivation, however, was more suitable for P solubilization than no pre-cultivation when bacteria were grown with xylose. A positive correlation was detected between the production of organic acids and phosphate solubilization. P. agglomerans ZB possessed many plant growth promotion traits such as N2 fixation and production of indole 3-acetic acid, phytase, alkaline phosphatase. Pot experiment showed inoculation with single isolate ZB or biofertilizer prepared from semi-solid fermentation of isolate ZB with spent mushroom substrate (SMS) compost could enhance plant growth with respect to number of leaves, plant leave area, stem diameter, root length, root dry mass, shoot dry mass and biomass when compared to the abiotic control, revealing strain ZB could be a promising environmental-friendly biofertilizer to apply for agricultural field.

  相似文献   
8.

Background

Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H2S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H2S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF).

Methodology/Principal Findings

CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H2S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H2S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H2S level in the PVN in both sham-operated rats and CHF rats.

Conclusions

Exogenous H2S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H2S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.  相似文献   
9.
Injection of leptin into white adipose tissue (WAT) increases sympathetic outflow. The present study was designed to determine the effects of capsaicin and other chemicals in WAT on the sympathetic outflow and blood pressure and the roles of WAT afferents and hypothalamic paraventricular nucleus (PVN) in the adipose afferent reflex (AAR). The AAR was induced by injection of capsaicin, bradykinin, adenosine, adenosine triphosphate (ATP), or leptin into inguinal WAT (iWAT) or retroperitoneal WAT (rWAT) in anesthetized rats. The iWAT injection of capsaicin increased the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) but not the heart rate. Bradykinin, adenosine, or leptin but not ATP in the iWAT caused similar effects to capsaicin on the RSNA and MAP. Intravenous, intramuscular, or intradermal injection of capsaicin had no significant effects on the RSNA and MAP. The effects of capsaicin in rWAT were similar to that in iWAT on the RSNA and MAP. Furthermore, injection of capsaicin into the iWAT increased the WAT afferent nerve activities, WAT efferent nerve activity, and brown adipose tissue efferent nerve activity. The iWAT denervation or chemical lesion of the PVN neurons with kainic acid abolished the AAR induced by the iWAT injection of capsaicin. These results indicate that the stimulation of iWAT afferents with capsaicin, bradykinin, adenosine, or leptin reflexly increases the RSNA and blood pressure. The iWAT afferents and the PVN are involved in the AAR induced by capsaicin in the iWAT.  相似文献   
10.
A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号