首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   10篇
  国内免费   1篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   16篇
  2020年   4篇
  2019年   10篇
  2018年   12篇
  2017年   7篇
  2016年   11篇
  2015年   16篇
  2014年   16篇
  2013年   8篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  1996年   1篇
排序方式: 共有156条查询结果,搜索用时 62 毫秒
1.
2.
Probiotics and Antimicrobial Proteins - Antibiotic growth promoters have been utilized for long time at subtherapeutic levels as feed supplements in monogastric animal rations. Because of their...  相似文献   
3.
Tristeza is a devastating viral disease in all the citrus growing countries throughout the world and has killed millions of citrus trees in severely affected orchards. The citrus species grafted on sour orange rootstock are affected by this disease. Predominantly, the sweet orange, grapefruit and lime trees grafted on sour orange exhibit severe symptoms like quick decline, vein clearing, pin holing, bark scaling and degeneration leading to variable symptoms. Symptomatic expression of Citrus tristeza virus (CTV) in different hosts has been attributed to virus isolates which are from severe to mild. Different serological and molecular assays have been deployed to differentiate the strains of CTV. Citrus tristeza virus is diversified towards its strains on the basis of biological, serological and molecular characterization. Phenotypic expression is due to genetic alteration and different molecular basis have now been adopted for strain differentiation. This review will give a brief idea about the different CTV isolates, their characterization based on nucleic acid and serological assays. Different methods along with salient features for strain characterization has also been reviewed. This review will also open the new aspects towards formulation of management strategies through different detection techniques.  相似文献   
4.
In the vermicomposting of paper mill sludge, the activity of earthworms is very dependent on dietetic polysaccharides including cellulose as energy sources. Most of these polymers are degraded by the host microbiota and considered potentially important source for cellulolytic enzymes. In the present study, a metagenomic library was constructed from vermicompost (VC) prepared with paper mill sludge and dairy sludge (fresh sludge, FS) and functionally screened for cellulolytic activities. Eighteen cellulase expressing clones were isolated from about 89,000 fosmid clones libraries. A short fragment library was constructed from the most active positive clone (cMGL504) and one open reading frame (ORF) of 1,092 bp encoding an endo-β-1,4-glucanase was indentified which showed 88% similarity with Cellvibrio mixtus cellulase A gene. The endo-β-1,4-glucanase cmgl504 gene was overexpressed in Escherichia coli. The purified recombinant cmgl504 cellulase displayed activities at a broad range of temperature (25–55°C) and pH (5.5–8.5). The enzyme degraded carboxymethyl cellulose (CMC) with 15.4 U, while having low activity against avicel. No detectable activity was found for xylan and laminarin. The enzyme activity was stimulated by potassium chloride. The deduced protein and three-dimensional structure of metagenome-derived cellulase cmgl504 possessed all features, including general architecture, signature motifs, and N-terminal signal peptide, followed by the catalytic domain of cellulase belonging to glycosyl hydrolase family 5 (GHF5). The cellulases cloned in this work may play important roles in the degradation of celluloses in vermicomposting process and could be exploited for industrial application in future.  相似文献   
5.
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.  相似文献   
6.
Plasmonics - This research illustrates a parametric study based on surface plasmon resonance of a slightly gold-coated photonic crystal fiber (PCF). In verifying sensing accuracy, the proposed...  相似文献   
7.
Formation of bacterial biofilms is a risk with many in situ medical devices. Biofilm-forming Bacillus species are associated with potentially life-threatening catheter-related blood stream infections in immunocompromised patients. Here, bacteria were isolated from biofilm-like structures within the lumen of central venous catheters (CVCs) from two patients admitted to cardiac hospital wards. Isolates belonged to the Bacillus cereus group, exhibited strong biofilm formation propensity, and mapped phylogenetically close to the B. cereus emetic cluster. Together, whole genome sequencing and quantitative PCR confirmed that the isolates constituted the same strain and possessed a range of genes important for and up-regulated during biofilm formation. Antimicrobial susceptibility testing demonstrated resistance to trimethoprim-sulphamethoxazole, clindamycin, penicillin and ampicillin. Inspection of the genome revealed several chromosomal β-lactamase genes and a sulphonamide resistant variant of folP. This study clearly shows that B. cereus persisting in hospital ward environments may constitute a risk factor from repeated contamination of CVCs.  相似文献   
8.
9.
We examined and compared the in vitro effects of misoprostol (synthetic prostaglandin E1 (PGE1) analogue) on prostaglandin E2 (PGE2) secretion and EP3 receptor mRNA expression in the pregnant rat myometrium and cervix at 19 days gestation. Myometrial and cervical tissue samples were exposed to media with or without misoprostol (50 or 100 pg/ml) and incubated for 15 and 30 min, and 1, 3, 6, 12, and 24 h. Media and tissue samples were collected for quantification of PGE2 and mRNA expression of rEP3alpha and rEP3beta receptor, respectively. PGE2 secretion increased (P < or = 0.05) in the myometrium exposed to 50 and 100 pg/ml misoprostol. Cervical PGE2 secretion increased following exposure to the 100 pg/ml dose only. In the myometrium, 50 and 100 pg/ml misoprostol induced elevations in rEP3alpha and rEP3beta receptor mRNA expression. rEP3alpha and rEP3beta receptor mRNA expression in the cervix was not different from controls. These data demonstrate that the EP3 receptor is differentially expressed in the myometrium and cervix in response to misoprostol. This may account for the ability of misoprostol to stimulate the myometrium when administered for cervical ripening.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号