首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   35篇
  国内免费   38篇
  2024年   2篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   16篇
  2019年   27篇
  2018年   19篇
  2017年   14篇
  2016年   20篇
  2015年   33篇
  2014年   32篇
  2013年   35篇
  2012年   37篇
  2011年   25篇
  2010年   12篇
  2009年   10篇
  2008年   16篇
  2007年   23篇
  2006年   16篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2002年   13篇
  2001年   6篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   9篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   5篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有516条查询结果,搜索用时 218 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
3.
 Radiolytic reduction at 77 K of oxo-/hydroxo-bridged dinuclear iron(III) complexes in frozen solutions forms kinetically stabilized, mixed-valent species in high yields that model the mixed-valent sites of non-heme, diiron proteins. The mixed-valent species trapped at 77 K retain ligation geometry similar to the initial diferric clusters. The shapes of the mixed-valent EPR signals depend strongly on the bridging ligands. Spectra of the Fe(II)OFe(III) species reveal an S=1/2 ground state with small g-anisotropy as characterized by the uniaxial component (g z g av /2<0.03) observable at temperatures as high as ∼100 K. In contrast, hydroxo-bridged mixed-valent species are characterized by large g-anisotropy (g z g av /2>0.03) and are observable only below 30 K. Annealing at higher temperatures causes structural relaxation and changes in the EPR characteristics. EPR spectral properties allow the oxo- and hydroxo-bridged, mixed-valent diiron centers to be distinguished from each other and can help characterize the structure of mixed-valent centers in proteins. Received: 27 June 1998 / Accepted: 25 February 1999  相似文献   
4.
The oxygen activation mechanisms proposed for nonheme iron systems generally follow the heme paradigm in invoking the involvement of iron-peroxo and iron-oxo species in their catalytic cycles. However, the nonheme ligand environments allow for end-on and side-on dioxygen coordination and impart greater flexibility in the modes of dioxygen activation. The currently available evidence for nonheme iron-peroxo and iron-oxo intermediates is summarized and discussed in light of the ongoing discussion on the nature of the oxidant(s) in heme enzymes.  相似文献   
5.
6.
Tyrosine 3-monooxygenase (tyrosine hydroxylase) is a non-heme iron, tetrahydropterin-dependent enzyme which catalyzes the rate-limiting step in the biosynthesis of catecholamines. The highly purified bovine adrenal enzyme contains an unusual blue-green chromophore with lambda max at around 700 nm (epsilon = 1.3 (mM subunit enzyme)-1 cm-1). On excitation at 605.2 nm, resonance-enhanced Raman vibrations are observed at 454, 494, 527, 604, 635, 835, 1130, 1271, 1320, 1426, and 1476 cm-1. The excitation profiles of the modes of 1276 and 1476 cm-1 (from 488 to 620 nm) follow the contour of the 700 nm absorption band. The vibrations observed strongly indicate the presence of a bidentate catecholamine-Fe(III) complex in the enzyme as isolated which gives rise to the characteristic charge-transfer transitions. This is further supported by the release of 0.11 +/- 0.04 mol of noradrenaline and 0.25 +/- 0.06 mol of adrenaline per mol of enzyme subunit on denaturation of the enzyme. The energies of the catecholate to Fe(III) charge-transfer transitions indicate a mixture of histidines and carboxylate(s) coordinated to the iron center in tyrosine hydroxylase. At neutral pH, the enzymatic activity was inhibited more than 50% by 10 microM dopamine, noradrenaline, and adrenaline. The high affinity of the catecholamines to the nonphosphorylated form of tyrosine hydroxylase may have significance in vivo since catecholamines are potent feedback inhibitors of the enzyme.  相似文献   
7.
The exchange coupling of reduced uteroferrin has been measured (19.8(5) cm-1 S1.S2) using recently developed techniques for studying metalloprotein magnetization. A spin Hamiltonian describing the coupled binuclear Fe(II).Fe(III) center has been used to fit the low and high field magnetization data, the EPR g values, and the highly anisotropic effective hyperfine tensor of the ferric site. The exchange coupling of the phosphate complex of reduced uteroferrin has also been measured (6.0(5) cm-1 S1.S2) using the same techniques. The smaller exchange coupling of the phosphate complex is comparable with the zero field splittings of the iron sites. This results in increased sensitivity of the system g values (found by calculation from the spin Hamiltonian) to variations of the zero field splitting parameters arising from heterogeneities in the protein microenvironment. Consequently, there is a very significant (9-fold) increase in the "effective g strain" of the system compared to the situation in the absence of phosphate. This, together with the larger g anisotropy (g = (1.06, 1.51, 2.27)), gives rise to an EPR signal for the phosphate complex of reduced uteroferrin which is extremely broad and difficult to detect but which has now been identified for the first time.  相似文献   
8.
4-Hydroxyphenylpyruvate dioxygenase is an iron-tyrosinate protein   总被引:1,自引:0,他引:1  
A resonance Raman investigation into the blue chromophore of 4-hydroxyphenylpyruvate dioxygenase, a non-heme iron enzyme from Pseudomonas P. J. 874, reveals the presence of enhanced vibrations characteristic of tyrosinate coordination to the iron center. The excitation profiles for these features show that they are associated with the 595 nm absorption feature. EPR studies of this enzyme indicate the presence of a high-spin ferric center in a rhombic environment, as evidenced by a signal at g = 4.3 with the correct intensity for the measured iron content. This enzyme thus belongs to the emerging class of iron-tyrosinate proteins.  相似文献   
9.
The 2,3-dihydroxybenzoate and thioglycolate complexes of iron(III)-ovotransferrin have been studied with resonance Raman and extended x-ray absorption fine structure spectroscopies, respectively, to obtain evidence for the coordination of the synergistic anion to the iron center. The dihydroxybenzoate complex exhibits resonance-enhanced Raman vibrations arising from both the endogenous tyrosinates and the added dihydroxybenzoate. A comparison of the extended x-ray absorption fine structure spectra of the carbonate and thioglycolate complexes shows a large feature at about 1.95 A assigned to Fe-(O,N) interactions. The latter complex exhibits an added feature at 2.32 A assigned to an Fe-S interaction. These experiments demonstrate that the Lewis base functions in the synergistic anions coordinate to the iron in ovotransferrin.  相似文献   
10.
鸢尾体细胞无性系的建立与变异   总被引:4,自引:0,他引:4  
本文以德鸢尾,马蔺、拟鸢尾和鸢等几种宿根鸢尾为试验材料,通过花器培养建立了体细胞无性系,在多次继代培养过程中,研究了离体培养对鸢尾体细胞无性系变异的影响,并运用聚丙烯酰胺凝胶垂直板电泳技术分析了试管苗叶片的过氧化物酶同工酶。结果表明离体培养已经改变了鸢尾的遗传基础,但在形态特征、生态习性及观赏性状等方面未发生明显的表型变异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号